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Abstract

Given a finite projective plane of order n. A quadrangle consists
of four points A,B,C,D, no three collinear. If the diagonal points are
non-collinear, the quadrangle is called a non-Fano quad. A general
sum of squares theorem is proved for the distribution of points in a
plane containing a non-Fano quad, whenever n ≥ 7. The theorem
implies that the number of possible distributions of points in a plane
of order n is bounded for all n ≥ 7. This is used to give a simple
combinatorial proof of the uniqueness of PP (7).

1 Introduction

A finite projective plane of order n is denoted PP (n). A quadrangle (which
we abbreviate to quad), is a set of four points, A,B,C,D, no three of which
are collinear. The intersections of the lines AB and CD, AC and BD, and
AD and BC determine three points E,F and G, respectively, called the
diagonal points of the quad. If E,F and G are collinear, the quad is called
a Fano quad. If they are non-collinear, we have a non-Fano quad.

We begin by counting the points and lines of PP (n) in relation to a non-
Fano quad A,B,C,D. We then consider a special distribution of points and
lines which satisfies all pair-counts for all n ≥ 7. In section 2, a sum-of-
squares theorem is proved, describing the possible distributions of points
in PP (n), when n ≥ 7. In section 3, all possible solution patterns are
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enumerated. There are only 54 possible solution patterns, for each n ≥ 7.
In section 4, the results of section 3 are used to give a simple combinatorial
proof of the uniqueness of PP (7).

Let A,B,C,D be a non-Fano quad in PP (n), where n ≥ 7. We then
have three additional lines, EF,EG and FG, so that 9 lines are determined.
These 9 lines containing the quad can be diagrammed as shown in Figure 1.
The line EF must intersect the lines AD and BC, so that points u and v are
determined. Similarly points w, x, y, z are determined by the requirement
that the lines EG and FG must intersect each of the first 6 lines. This gives
9 lines of the plane, with 4 known points on each line. Since each line of
PP (n) has n+1 points, there are an additional n−3 points on each of these
lines. We call these additional points letters. The letters on these 9 lines
must all be distinct, because these 9 lines all intersect in exactly one point.
Thus we have 9(n−3) letters. We also have the 7 points A,B,C,D,E, F,G,
and the 6 points u, v, w, x, y, z, giving 9(n − 3) + 7 + 6 = 9n − 14 points.
Now PP (n) has n2 + n+ 1 points in total, so that there are an additional
n2 − 8n+ 15 = (n − 3)(n − 5) points, which we call residual points, none
of which appear on the 9 lines we have so far constructed. We call these 9
lines the “quad” lines.

At this point it is convenient to colour the points according to their type.
The quad points A,B, . . .G are coloured blue. The points u, v, w, x, y, z are
coloured yellow. The letters are coloured green. The residual points are
coloured red. We have four kinds of points in the projective plane, with
respect to a given non-Fano quad.

ABEy

ACFw

ADGu

BCGv

BDFx

CDEz

EFuv

EGwx

FGyz

 9(n-3)

letters

Figure 1: A non-Fano quad in PP (n)

Each point of PP (n) appears on n + 1 lines. Since A,B,C,D have
already appeared on 3 lines each, they must still occur on n− 2 more lines.
Similarly, E,F,G must each appear on an additional n − 3 lines. We call
these lines the “letter” lines. There are 4 · (n − 2) + 3 · (n − 3) = 7n− 17
letter lines in total. Each residual point must appear exactly once in the
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letter lines containing each of A,B, . . . G. Refer to Figure 2.
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Figure 2: The “letter” lines in PP (n).

Consider the letter lines containing E. Call them the E-lines. Since E
has appeared 4 times in the quad lines, there are 5 quad lines not containing
E. These 5 lines contain 5(n− 3) letters, which must occur on the E-lines.
The E-lines must also contain the (n − 3)(n − 5) residual points. Now
each quad line not containing E has n− 3 letters, and these must occur on
different E-lines. There are exactly (n− 3) E-lines. Since there are 5 quad
lines not containing E, we conclude that each E-line must contain exactly
5 letters, and therefore exactly n− 5 residual points. So the E-lines must
look like Figure 3. The same applies to the F -lines and G-lines.

E

E

:

E

letters
resid.

 pts
n-3

5 n-5

Figure 3: The E-lines in PP (n).

Consider now the letter lines containing A. Call them the A-lines. A
has appeared 3 times in the quad lines, so that there are 6 quad lines not
containing A. These 6 lines contain 6(n − 3) letters, which must occur
in the A-lines. There can be at most 6 letters per A-line, as there are
only 6 quad lines not containing A. The A-lines must also contain the
(n−3)(n−5) residual points. The quad lines containing A also contain the
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points u,w, y. Therefore v, x, z must each occur exactly one somewhere in
the A-lines. This is indicated in Figure 2. A similar argument applies to
the points occurring in the B-lines, C-lines, and D-lines. Since there are
n− 3 E-lines, each with n− 5 residual points, there can be at most n− 3
residual points on any A-line – for if there were n− 2 or more, some pair of
them would also occur together on an E-line, which is not possible. Two
possible arrangements of points in the A-lines are shown in Figure 4. There
may be other possible arrangements.

A

A

:

A

letters resid.

 pts
n-2

6 n-6 n-6

n-3 n-5

vxz

A

A

:

A

6

4

v
x
z

letters resid.

 pts

Figure 4: Two arrangements of the A-lines in PP (n).

We now have 7n − 17 letter lines, and 9 quad lines, giving 7n − 8
lines. Since PP (n) has n2 + n+ 1 lines, there are n2 − 6n+ 9 = (n− 3)2

more lines. We call these residual lines. Each residual point has occurred
with each of the points A,B,C,D,E, F,G, i.e., 7 times so far. It follows
that each residual point occurs n − 6 times in the residual lines, giving
(n − 3)(n − 5)(n − 6) occurrences there. The yellow points u, v, w, x, y, z
have each appeared 4 times so far, and so must appear n − 3 times in
the residual lines, giving 6(n− 3) occurrences there. The remaining points
in the residual lines are letters, which occur a total of (n + 1)(n − 3)2 −
(n − 3)(n − 5)(n − 6) − 6(n − 3) = 3(n − 3)(3n − 13) occurrences. There
are several possible distributions of the points in the residual lines. One
possible distribution is shown in Figure 5. We count the occurrences of
the various types of points to confirm that the total counts are correct.
We have 6(n − 3) lines containing one yellow point, 7 letters, and n − 7
residual points; and (n − 3)(n − 9) lines containing 9 letters and n − 8
residual points. This accounts for 6(n − 3) occurrences of yellow points;
7 ·6(n−3)+9 · (n−3)(n−9) = 3(n−3)(3n+13) occurrences of letters; and
6(n−3)(n−7)+(n−3)(n−9)(n−8) = (n−3)(n−5)(n−6) occurrences of
residual points. Notice that this distribution requires that n ≥ 9 in order
to make all the above counts non-negative.

Another distribution is shown in Figure 6. Here we have 4 lines each
containing three yellow points, 3 letters, and n− 5 residual points; 6(n− 5)
lines each containing 1 yellow point, 7 letters, and n − 7 residual points;
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Figure 5: An arrangement of the residual lines in PP (n), where n ≥ 9.

and (n − 5)(n − 7) lines containing 9 letters and n − 8 residual points.
We count the total number of occurrences of each type of point in order
to confirm that the total counts are correct. Yellow points: there are
4 · 3 + 6(n− 5) = 6(n− 3) occurrences in total; letters: there are 4 · 3 + 7 ·
6(n− 5)+ 9(n− 5)(n− 7) = 3(n− 3)(3n− 13) occurrences; residual points:
there are 4(n−5)+6(n−5)(n−7)+(n−5)(n−7)(n−8) = (n−3)(n−5)(n−6)
occurrences in total. This distribution requires n ≥ 7.

We summarise the numbers of the various types of points and lines in
the following table. The table shows the number of each type of point, and
the frequency of each type in the residual lines.

2 The Sum of Squares Theorem

We now consider the occurrences of pairs. The goal is to find all possible
distributions of points which satisfy all pair counts. Such a distribution
is called a solution pattern. Each pair of points must occur in exactly
one line of the plane. All possible pairs of the points A,B,C,D,E, F,G
occur in the quad lines. The 9(n − 3) letters determine

(

9(n−3)
2

)

pairs, of

which 9
(

n−3
2

)

appear in the quad lines. The (n− 3)(n− 5) residual points
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Figure 6: An arrangement of the residual lines in PP (n), where n ≥ 7.

determine
(

(n−3)(n−5)
2

)

pairs, of which 3(n − 3)
(

n−5
2

)

appear in the E,F ,
and G-lines. The pair counts of residual points and letter points in the
A,B,C,D-lines, and in the residual lines, depend on the distribution of
points. Let us choose the distribution of points in the A,B,C,D-lines to
be that of the right diagram in Figure 4; and in the residual lines as in
Figure 6, and count the pairs.

letter-letter pairs
9
(

n−3
2

)

in the quad lines,

+ 4{(n− 5) ·
(

6
2

)

+ 3
(

4
2

)

} in the A,B,C,D-lines,

+ 3(n− 3) ·
(

5
2

)

in the E,F,G-lines,

+ 4
(

3
2

)

+ 6(n− 5)
(

7
2

)

+ (n− 5)(n− 7)
(

9
2

)

in the residual lines,

=
(

9(n−3)
2

)

letter-residual point pairs
4 · {6(n− 6)(n− 5) + 3 · 4(n− 5)} in the A,B,C,D-lines,
+ 3 · 5(n− 5)(n− 3) in the E,F,G-lines,
+ 4 · 3(n − 5) + 6(n − 5) · 7(n − 7) + (n − 5)(n − 7) · 9(n − 8) in the

residual lines
= 9(n− 3)(n− 3)(n− 5)

letter-{u, v, w, x, y, z} pairs
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type of point number res-line-freq
quad point 7 0
letters 9(n− 3) (n− 4) or (n− 5)
u, v, w, x, y, z 6 (n− 3)
residual (n− 3)(n− 5) (n− 6)
type of line number
quad line 9
letter line 4(n− 2) + 3(n− 3)
residual (n− 3)2

Figure 7: The types of points and lines in PP (n).

3 · 2(n− 3) + 6 · 1(n− 3) in the quad lines,
+ 4 · 4 · 3 in the A,B,C,D-lines,
+ 4 · 4 · 3 + 1 · 7 · 6(n− 5) in the residual lines,
= 6 · 9(n− 3)

residual point-residual point pairs
4 · {(n− 5)

(

n−6
2

)

+ 3
(

n−5
2

)

} in the A,B,C,D-lines,

+ 3 · (n− 3)
(

n−5
2

)

in the E,F,G-lines,

+ 4
(

n−5
2

)

+ 6(n− 5)
(

n−7
2

)

+ (n− 5)(n− 7)
(

n−8
2

)

in the residual lines,

=
(

(n−3)(n−5)
2

)

residual point-{u, v, w, x, y, z} pairs
4 · 3(n− 5) in the letter lines,
+ 4 · 3(n− 5) + 6(n− 5)(n− 7) in the residual lines,
= 6(n− 3)(n− 5)

{u, v, w, x, y, z}-{u, v, w, x, y, z} pairs
3 in the quad lines
+ 4 ·

(

3
2

)

in the residual lines

=
(

6
2

)

Thus, this distribution of points satisfies all the pair counts. We state
this as a lemma.

Lemma 1 The distribution of points given by Figures 1, 3, 6, and the right
diagram of Figure 4 satisfy all pair counts, for n ≥ 7.

We now proceed to find all distributions that satisfy the pair counts.
It will turn out that the number of allowable distributions is limited, for
all n. We number the residual lines in Figure 6 from 1 to N , where N =
(n−3)2, and let ri denote the number of letters in line i, where i = 1, . . . , N .
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According to Figure 6, r1, r2, r3, r4 = 3, r5, r6, . . . , rM = 7, where M =
4 + 6(n − 5), and rM+1, . . . , rN = 9 is one possibility satisfying all the
pair counts. We can always assume that r1 ≤ r2 ≤ . . . ≤ rN . We let
xi denote the number of yellow points occurring in the ith residual line.
Then (n + 1) − ri − xi is the number of residual points occurring in the
ith residual line. We number the A-lines 1 to n− 2, and let ai denote the
number of letters in line i, where i = 1, . . . , n−2. One possibility is ai = 6,
for i = 1, . . . , n− 5 and an−4 = an−3 = an−2 = 4. We can always assume
that a1 ≥ a2 ≥ . . . ≥ an−2. We let αi denote the number of yellow points
occurring in the ith A-line. Then n − ai − αi is the number of residual
points occurring in the ith A-line. Similarly bi and βi denote the number
of letters and yellow points occurring in the B-lines; ci and γi are for the
C-lines; and di and δi are for the D-lines.

Counting the occurrences of the letter-letter pairs, yellow-yellow pairs,
and red-red pairs, we obtain the following formulas.

N
∑

k=1

(

rk
2

)

+

n−2
∑

k=1

(

ak
2

)

+

(

bk
2

)

+

(

ck
2

)

+

(

dk
2

)

= 6(n− 3)(6n− 23) (1)

Here 6(n− 3)(6n− 23) is obtained as
(

9(n−3)
2

)

− 9
(

n−3
2

)

− 3(n− 3)
(

5
2

)

.

N
∑

k=1

(

xk

2

)

+

n−2
∑

k=1

(

αk

2

)

+

(

βk

2

)

+

(

γk
2

)

+

(

δk
2

)

= 12 (2)

Here 12 is obtained as
(

6
2

)

− 3.

N
∑

k=1

(

(n+ 1)− rk − xk

2

)

+
n−2
∑

k=1

(

n− ak − αk

2

)

+

(

n− bk − βk

2

)

+

+

n−2
∑

k=1

(

n− ck − γk
2

)

+

(

n− dk − δk
2

)

=
1

2
(n−3)(n−5)(n2−11n+32) (3)

Here 1
2 (n− 3)(n− 5)(n2 − 11n+32) is obtained as

(

(n−3)(n−5)
2

)

− 3(n−

3)
(

n−5
2

)

.

There are three additional equations that can be obtained by counting
the number of pairs composed of two different kinds of points (eg., letter
and residual point, etc.), but the resulting equations are not independent.
It is sufficient to consider the above three equations.

In order to simplify the equations, we do the following. Write:
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rk = 3 + δrk; xk = 3 + δxk; for k = 1, . . . , 4
rk = 7 + δrk; xk = 1 + δxk; for k = 5, . . . ,M
rk = 9 + δrk; xk = 0 + δxk; for k = M + 1, . . . , N

ak = 6 + δak; bk = 6 + δbk; for k = 1, . . . , n− 5
ak = 4 + δak; bk = 4 + δbk; for k = n− 4, n− 3, n− 2
ck = 6 + δck; dk = 6 + δdk; for for k = 1, . . . , n− 5
ck = 4 + δck; dk = 4 + δdk; for k = n− 4, n− 3, n− 2

αk = 0 + δαk; βk = 0 + δβk; for k = 1, . . . , n− 5
αk = 1 + δαk; βk = 1 + δβk; for k = n− 4, n− 3, n− 2
γk = 0 + δγk; δk = 0 + δδk; for for k = 1, . . . , n− 5
γk = 1 + δγk; δk = 1 + δδk; for k = n− 4, n− 3, n− 2

Counting the occurrences of the various points then gives the following
formulas.

N
∑

k=1

δrk = 0,

N
∑

k=1

δxk = 0

n−2
∑

k=1

δak = 0,

n−2
∑

k=1

δbk = 0,

n−2
∑

k=1

δck = 0,

n−2
∑

k=1

δdk = 0

n−2
∑

k=1

δαk = 0,

n−2
∑

k=1

δβk = 0,

n−2
∑

k=1

δγk = 0,

n−2
∑

k=1

δδk = 0 (∗)

Substituting for rk, ak, bk, ck and dk into formula (1), we obtain

4
∑

k=1

(

3 + δrk
2

)

+

M
∑

k=5

(

7 + δrk
2

)

+

N
∑

k=M+1

(

9 + δrk
2

)

+

+

n−5
∑

k=1

(

6 + δak
2

)

+

(

6 + δbk
2

)

+

(

6 + δck
2

)

+

(

6 + δdk
2

)

+

+
n−2
∑

k=n−4

(

4 + δak
2

)

+

(

4 + δbk
2

)

+

(

4 + δck
2

)

+

(

4 + δdk
2

)

=

= 6(n− 3)(6n− 23)
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Writing
(

m

2

)

= m(m− 1)/2, and using the summations (∗), this expres-
sion can be expanded and simplified to:

N
∑

k=1

δr2k +

n−2
∑

k=1

(δa2k + δb2k + δc2k + δd2k) =

4
n−2
∑

k=n−4

(δak + δbk + δck + δdk)− 8
M
∑

k=5

δrk − 12
N
∑

k=M+1

δrk (4)

Substituting into formulas (2) and (3) produces the following results:

N
∑

k=1

δx2
k +

n−2
∑

k=1

(δα2
k + δβ2

k + δγ2
k + δδ2k) =

−2
n−2
∑

k=n−4

(δαk + δβk + δγk + δδk) + 4
M
∑

k=5

δxk + 6
N
∑

k=M+1

δxk (5)

N
∑

k=1

(δrk + δxk)
2+

+

n−2
∑

k=1

[(δak + δαk)
2 + (δbk + δβk)

2] + (δck + δγk)
2 + (δdk + δδk)

2] =

= 2

n−2
∑

k=n−4

(δak + δαk + δbk + δβk + δck + δγk + δdk + δδk)+

−4

M
∑

k=5

(δrk + δxk)− 6

N
∑

k=M+1

(δrk + δxk) (6)

Now we use formula (4) to solve for 4
∑

M

k=5 δrk + 6
∑

N

k=M+1 δrk, and

formula (5) to solve for 4
∑M

k=5 δxk + 6
∑N

k=M+1 δxk, which we substitute
into formula (6). The result is:

N
∑

k=1

(δrk+δxk)
2+

n−2
∑

k=1

[(δak+δαk)
2+(δbk+δβk)

2+(δck+δγk)
2+(δdk+δδk)

2] =

= 2

n−2
∑

k=n−4

(δak + δαk + δbk + δβk + δck + δγk + δdk + δδk)+

10



+
1

2

N
∑

k=1

δr2
k
+

1

2

n−2
∑

k=1

(δa2
k
+δb2

k
+δc2

k
+δd2

k
)−2

n−2
∑

k=n−4

(δak+δbk+δck+δdk)+

−

N
∑

k=1

δx2
k −

n−2
∑

k=1

(δα2
k + δβ2

k + δγ2
k + δδ2k)− 2

n−2
∑

k=n−4

(δαk + δβk + δγk + δδk)

A number of terms cancel, leaving

N
∑

k=1

(δrk+δxk)
2+

n−2
∑

k=1

[(δak+δαk)
2+(δbk+δβk)

2+(δck+δγk)
2+(δdk+δδk)

2] =

1

2

N
∑

k=1

δr2
k
+
1

2

n−2
∑

k=1

[(δa2
k
+δb2

k
+δc2

k
+δd2

k
)]−

N
∑

k=1

δx2
k
−

n−2
∑

k=1

(δα2
k
+δβ2

k
+δγ2

k
+δδ2

k
)

Expanding the squares on the left-hand side, and moving the right-hand
side to the left leaves

N
∑

k=1

(
1

2
δr2

k
+ 2δrkδxk + 2δx2

k
)+

+

n−2
∑

k=1

(
1

2
δa2

k
+ 2δakδαk + 2δα2

k
+

1

2
δb2

k
+ 2δbkδβk + 2δβ2

k
)+

+

n−2
∑

k=1

(
1

2
δc2k + 2δckδγ + 2δγ2

k +
1

2
δd2k + 2δdkδδk + 2δδ2k) = 0

Rewriting this gives the following

Theorem 1 Let the quantities δrk, δxk, δak, δbk, δck, δdk, δαk, δβk, δγk, δδk
be as above. Then

N
∑

k=1

(δrk + 2δxk)
2+

+

n−2
∑

k=1

[(δak + 2δαk)
2 + (δbk + 2δβk)

2 + (δck + 2δγk)
2 + (δdk + 2δδk)

2] = 0

Corollary 1 The δrk and δxk satisfy δrk = −2δxk, for k = 1, . . . , N .
The δak, δbk, δck, δdk and δαk, δβk, δγk, δδk satisfy δak = −2δαk, δbk =
−2δβk, δck = −2δγk, δdk = −2δδk, for k = 1, . . . , n− 2.
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We will use this corollary to completely determine all possible distribu-
tion patterns of points in a projective plane PP (n) containing a non-Fano
quad, where n ≥ 7. We shall see that there are only 9 basic solution
patterns possible. Now we have the freedom of ordering the rk so that
r1 ≤ r2 ≤ . . . ≤ rN . Similarly, we can take a1 ≥ a2 ≥ . . . ≥ an−2;
b1 ≥ b2 ≥ . . . ≥ bn−2; c1 ≥ c2 ≥ . . . ≥ cn−2; and d1 ≥ d2 ≥ . . . ≥ dn−2. We
also know that each rk ≤ 9, since the quad lines are 9 lines which contain
7 letters each. Any residual line with more than 9 letters would necessarily
have a pair that also occurs in a quad line.

Since δrk = −2δxk, and since the initial solution has rk = 3, 7 or 9,
it follows that all rk are odd numbers, and that all rk ≤ 9. Similarly,
we conclude that all ak, bk, ck, dk are even numbers ≤ 6. This gives the
following:

Corollary 2 There are only three possible patterns for the solutions for
the A,B,C and D-lines.

The three possible patterns are illustrated in Figure 8. We say these
solution patterns are of type 1, 2, or 3 according to the maximum number
of yellow points occurring in a line. We will see that the number of possible
solution patterns for the residual lines is also very limited.
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Figure 8: The possible A-line solution patterns

3 The Solutions

Consider the distribution of the yellow points {u, v, w, x, y, z} in the
A,B,C,D-lines, as shown in Figures 2 and 8. The yellow points occur
in four groups of three: {v, x, z} with the A-lines; {u,w, z} with the B-
lines; {u, x, y} with the C-lines; and {v, w, y} with the D-lines. We will
call these four triples the A-triple, B-triple, C-triple, and D-triple, respec-
tively. Notice that any two of these triples intersect in exactly one point.
Furthermore, the only pairs of yellow points which appear in the quad lines
are uv, wx, and yz, and these pairs never occur in any of the above four
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Triples Complements
A : vxz uwy
B : uwz vxy
C : uxy vwz
D : vwy uxz

Figure 9: The A,B,C,D-triples, and their complements

triples. It follows that for each triple, the three pairs corresponding to it
must appear in the letter lines and/or residual lines. Since any 4-subset
of the yellow points necessarily contains one of the pairs uv, wx, or yz, we
conclude that any residual line can contain at most three yellow points,
i.e., xi ≤ 3, for all i.

Corresponding to any triple, eg., the A-triple {v, x, z}, there is a com-
plementary triple – in this case {u,w, y}, which doesn’t correspond to any
of A,B,C,D. The complementary triples are shown in Figure 9. The
A,B,C and D-triples are called primary triples.

Lemma 2 The distribution pattern of the yellow points completely deter-
mines the distribution pattern of the solution.

Proof . There are 12 pairs of yellow points that do not appear in the quad
lines. Suppose there are k residual lines containing three yellow points.
Then 0 ≤ k ≤ 4. These can be taken as the first k residual lines. This
determines 3k pairs of yellow points. Some or all of the remaining 12− 3k
pairs appear in the A,B,C and D-lines, which must be of type 1, 2 or 3.
Any remaining pairs appear in the residual lines. The residual lines in which
they appear have xi = 2, and these can be taken as the (k+1)st, (k+2)nd, . . .
residual lines. With respect to the solution of Figure 6, this determines δxi

for these lines. Since
∑

i
δxi = 0, this in turn determines the number of xi,

where i ≥ N = 6(n− 5) + 5, that have δxi = +1. The solution pattern is
thereby completely determined.

The above lemma allows a complete determination of all possible solu-
tion patterns. We can use it to find all possible solutions for some small
planes. There are 9 basic solution patterns, organized according to the
number of residual lines with xi = 3. In the next section, we will use these
to prove the uniqueness of the plane of order 7. Each solution pattern can
be further subdivided according to the distribution of yellow points in the
A,B,C, and D-lines. With the small planes, some of these will not be
possible. Some solution patterns are shown in Figures 10, 11, 12, etc.
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Solutions with no Complementary Triples

Suppose first that the residual lines contain no complementary triples.
Then a residual line with xi = 3 necessarily contains a primary triple.
The corresponding letter line solutions must be of type 1.

1) (1 solution) Suppose there are 4 residual lines with xi = 3. The dis-
tribution of yellow points in the residual lines must be as in Figure 6,
and must be of type 1 in the letter lines (see Figure 8).

2) (3 solutions) Suppose there are 3 residual lines with xi = 3. Without
loss of generality, these can be taken to be the A,B, and C-triples,
as shown in Figure 2. The D-lines solution can be of type 1, 2 or 3
(see Figure 8), giving three solutions.

2a) If the D-lines solution is of type 1, the three D-pairs vw, vy, wy
must occur on separate residual lines. We must have δx4 =
−1, δx5 = +1, δx6 = +1. Therefore δxN = −1, where N =
6(n−5)+5. The left diagram in Figure 10 is the only possibility.

2b) If the D-lines solution is of type 2, then two of the D-pairs, say
vw, vy, must occur on separate residual lines. We must have
δx4 = −1 and δx5 = +1. The middle diagram in Figure 10 is
the only possibility.

2c) If the D-lines solution is of type 3, the three D-pairs occur in the
D-lines. We must have δx4 = −2, δxN = +1, and δxN+1 = +1.
The right diagram in Figure 10 is the only possibility.
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Figure 10: Solutions 2a,b,c
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3) (6 solution patterns) Suppose there are two residual lines with xi = 3.
Without loss of generality, these can be taken to be the A and B-
triples, as shown in Figure 2. This distinguishes point z, as it is the
only point common to the A and B-triples. It also distinguishes point
y, which is the only point common to the C and D-triples. The C
and D-lines solutions can be of type 1, 2 or 3 (see Figure 8). Up to
symmetry this gives 6 solution patterns, with 10 possible solutions.

3a) If the C-lines solution is of type 1, the D-lines solution can be of
type 1, 2 or 3, as shown in Figure 11. In the situation when the
D-lines solution is of type 2, there is a D-line containing only
one yellow point. We must distinguish the cases when this point
is y or not y. This results in two ways of filling in the spaces
marked by ∗ in the diagram. In each case we use the δxi’s to
determine the three possible solution patterns.
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Figure 11: Solutions 3a

3b) If the C-lines solution is of type 2, we can assume that the
D-lines solution is of type 2 or 3 (for type 1 reduces to case
(3a), by interchanging C and D). There is a C-line containing
only one yellow point. We must distinguish the cases when this
point is y or not y. A similar situation holds when the D-lines
solution is of type 2. The result is two solution patterns, shown
in Figure 12. There are two ways of filling in the spaces marked
by ∗ in the middle diagram, and 3 ways for the left diagram,
giving 5 solutions, and two solution patterns.

3c) If the C-lines solution is of type 3, we can assume that the D-
lines solution is also of type 3, The unique possibility is shown

15



u

u

:

:

:

:

:

:

:

:

:

:

* *
* *

n-6

v x z
u w z

n-7

n-8

7

letters

letters

resid.

 pts
6(n-5)

+2

n-5

9

(n-5)(n-7)

-2

3

u

u

:

:

:

:

:

:

:

:

:

v x z
u w z

n-7

n-8

7

letters

letters

resid.

 pts
6(n-5)

-2

n-5

n-6

9

(n-5)(n-7)

3

* *
* *

* *
* *

u

u

:

:

:

:

:

:

:

:

:

:

v x z
u w z

n-7

n-8

7

letters

letters

resid.

 pts
6(n-5)

+6

n-5

9

(n-5)(n-7)

-4

3

Figure 12: Solutions 3b and 3c

in the right diagram of Figure 12.

4) (9 solution patterns) Suppose there is one residual line with xi = 3.
Without loss of generality, this can be taken to be the A-triple, as
shown in Figure 2. The B,C, and D-lines solutions can be of type 1, 2
or 3 (see Figure 8). The number of pairs of yellow points occurring in
the B,C, and D-lines can then be 0, 1, 2, 3, 4, 5, 6, 7 or 9. In each case,
the number of residual lines with xi = 2 is completely determined.
This in turn completely determines the number of residual lines with
xi = 1. Refer to Figure 13.

5) (12 solution patterns) Suppose there are no residual lines with xi = 3.
The A,B,C, and D-lines solutions are of type 1, 2 or 3 (see Figure 2).
The number of pairs of yellow points occurring in the A,B,C, and
D-lines can then be 0, 1, . . . , 10 or 12. In each case, the number
of residual lines with xi = 2 is completely determined. This in turn
completely determines the number of residual lines with xi = 1. Refer
to Figure 13.

We summarize the preceding results as:

Lemma 3 If there are no complementary triples appearing in the residual
lines, then there are 31 possible solution patterns.

Solutions with Complementary Triples

If the residual lines with xi = 3 contain complementary triples (see Fig-
ure 9), then a number of other solution patterns are possible. Observe

16



u

u

:

:

:

:

:

:

:

:

v x z

n-7

n-8

7

letters

letters

resid.

 pts

n-5

n-6

9

3

: :
: :

: :
: :

: :
: :

u

u

:

:

:

:

:

:

:

:

n-7

n-8

7

letters

letters

resid.

 pts

n-6

9

5

: :
: :

: :

: :

: :

: :

: :

Figure 13: Solution patterns for cases 4 and 5

that this implies the existence of Fano quads in the plane. For exam-
ple, the complementary A-triple is uwy. The diagonal points of the quad
{E,F,G,A} are u,w, y (see Figure 1). If these three points are collinear,
then {E,F,G,A} is a Fano quad.

6) (1 solution) Suppose there are 4 residual lines with xi = 3, containing
complementary triples. The distribution of yellow points in the resid-
ual lines must be as in Figure 6, except that the triples are now the
complementary triples instead. The lettter lines must be of type 1
(see Figure 8).

7) (4 solution patterns) Suppose there are 3 residual lines with xi = 3,
containing complementary triples. Without loss of generality the
triples can be taken as uwy, uxz and vwz. The B-lines must be
of type 1, as the three pairs of the B-triple uwz occur in these com-
plementary triples. The A,C and D-lines can be of type 1 or 2. This
gives four possible solutions.

8) (5 solution patterns) Suppose there are 2 residual lines with xi =
3, containing complementary triples. Without loss of generality the
triples can be taken as uwy and uxz. Notice that every primary
triple intersects one of uwy and uxz in a pair of points. Hence there
cannot be any primary triples occurring. There are 6 pairs of yellow
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points which do not occur in triples, namely vx, vy, vw, vz, xy, wz.
The A,B,C and D-lines must be of type 1 or 2, giving 5 possible
solution patterns.

9) (13 solution patterns) Suppose there is 1 residual line with xi = 3,
containing a complementary triple. Without loss of generality the
triple can be taken as uwy. The A-triple vxz is the only primary
triple which does not intersect uwy in a pair. This gives two sub-
cases.

9a) There is a residual line with xi = 3 containing vxz. The pairs
of yellow points not occurring in the triples uwy and vxz are
uz, wz, xy, vy. The A-lines must be of type 1. The B,C and D-
triples can be of type 1 or 2, giving 4 possible solution patterns.

9b) There is no residual line containing vxz. The A-lines can be of
type 1, 2 or 3. The B,C and D-lines can be of type 1 or 2. There
are 4 solution patterns when the A-lines are of type 3. There
are 5 solution patterns when the A-lines are of type 1 or 2.

We summarize the preceding results as:

Lemma 4 If there are complementary triples appearing in the residual
lines, then there are 23 possible solution patterns.

In addition we make the following observation.

Lemma 5 A plane PP (n) in which the A,B,C and D-lines are all of
type 3 contains a sub-plane of order 3.

Proof . The points of the sub-plane are A,B,C,D,E, F,G, u, v, w, x, y, z;
giving 13 points. The lines are the 4-subsets of the lines of PP (n) induced
by these points. There are 9 quad lines, each of which contains exactly 4
sub-plane points; and one line in each of the A,B,C, and D-lines.

4 Uniqueness of the Plane of Order 7

In this section we use the sum of squares theorem to prove the uniqueness of
PP (7). This can easily be proved by exhaustive enumeration by computer,
but a simple combinatorial proof is also useful. A proof of the uniqueness
originally appeared in three papers, in 1953 and 1954. In [6], Pierce proved
that every quad in PP (7) must be a non-Fano quad, by reducing the case
of a Fano quad to the Kirkman Schoolgirl problem, and enumerating all
possible solutions. In [2], Hall gave a proof of the uniqueness, building on

18



Pierce’s result. He assumed that all quads are non-Fano quads, and then
reduced the problem to a theorem of Moufang [4], which implied that the
plane must be Desarguesian. Note that Moufang’s paper is 65 pages long.
Hall’s paper contained an error, pointed out by G. Pickert. This error was
corrected by Hall in [3]. In the book “Projektive Ebenen” [5] by Pickert,
a proof following Hall is given (pp. 319-325) that if all quads of PP (7) are
non-Fano quads, then the plane must be Desarguesian. When a finite plane
is known to be Desarguesian, we can use a deep result described in [1] (pp.
68-70) to conclude that the plane can be coordinatized by a field, and is
therefore unique.

We use the sum of squares theorem to give an elementary combinatorial
proof of the uniqueness of PP (7). This will also imply that the automor-
phism group is transitive on all quads of PP (7). Using Pierce’s result [6],
we can assume that all quads are non-Fano quads. PP (7) contains 57
points and 57 lines of 8 points each. There are 36 letters and 8 residual
points. There are 16 residual lines. Each residual point occurs exactly once
in the residual lines. Refer to the table of Figure 7. Many of the possible
solution patterns can be easily ruled out. We shall see that Case (1) is
the only possible solution pattern and that the completion to a projective
plane is unique. Let the residual points be 1, 2, 3, 4, 5, 6, 7, 8. As there are
only 8 occurrences of the residual points in the residual lines, we can ar-
bitrarily number them with 1, 2, . . . , 8, and then determine the compatible
distributions of the residual points in the letter lines.
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Figure 14: A-line solution patterns for PP (7)

Lemma 6 Cases (2), (3) and (4) are not possible.

Proof . Refer to Figures 10, 11, 12 and 13. Notice that cases (2a), (2c), (3a)
and (3c) are not possible, because there are not 8 spaces for the residual
points to occur in the residual lines when n = 7. The only possibilities are
cases (2b) (middle diagram of Figure 10), (3b) (left diagram of Figure 12),
and (4) (left diagram of Figure 13). In each case, there is a residual line
containing the A-triple vxz, as well as residual lines containing two pairs of
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the D-triple vwy. This is illustrated in Figure 15, where the pair of yellow
points occurring in the D-lines is vw; a similar argument also holds if it is
vy or wy. Points 7 and 8 cannot occur in either of the last two D-lines,
because they have already both occurred with two of v, w, y in the residual
lines. Hence 7 and 8 must occur in the first two D-lines. Points 1 and
2 cannot occur together in the last two D-lines, and cannot occur at all
in the D-line containing v. Hence, at most one of them can occur in the
last two D-lines. Therefore one of them, say 2, occurs in the third D-line.
Now any two primary triples intersect in a point. Therefore 3 and 4 have
already both occurred with one of v, w, y in the residual lines. It follows
that at most one of them can occur in the last two D-lines, say 3. But then
there is no place for point 4, a contradiction.

vw

D
D
D
D
D

y

6

3

letters
7
8
2

***

1*v y 
w y

7
8

12 vxz
...

Figure 15: Cases (2), (3), and (4), PP (7)

Lemma 7 Case (5) is not possible.

Proof . Refer to Figures 13 (right diagram) and 16. There must be 8
residual lines containing a pair of yellow points. Without loss of generality,
the pairs vz and xz occur in the first two residual lines, and vx occurs in
the A-lines. Points 1 and 2 must occur in the first two A-lines. The C and
D-triples intersect vxz in x and v, respectively. Therefore at most one of
points 5 and 6 can occur in the last two A-lines, and at most one of points
7 and 8 can occur there. This is a contradiction.

Lemma 8 Cases (6), (7), (8), and (9) are not possible.

Proof . The existence of a line containing a complementary triple implies
that the plane contains a Fano quad, which is impossible.

Note that if we do not rely on Pierce’s result that all quads of PP (7)
must be non-Fano quads, we can easily prove that the cases of Lemma 8
are not possible, using the same methods as in Lemmas 6 and 7.
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Figure 16: Case (5), PP (7)

The preceding lemmas give the following:

Theorem 2 Every non-Fano quad in a PP (7) belongs to solution pattern
(1).

We shall see that the distribution of yellow points completely determines
the remaining structure of the plane. Figure 17 shows the first four residual
lines of solution pattern 1. Here we have labelled the 12 letters occurring
in these four lines a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3.
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Figure 17: Case (1), PP (7)

Notice that points 1 and 2 must occur in the first two A-lines. Points 3
and 4 have already occurred with z. Hence they occur in the A-lines with
v and x. Points 5 and 6 have already occurred with x. Hence they appear
in the A-lines with v and z. This leaves two places for points 7 and 8. We
then find that the residual points of the B,C and D-lines can be uniquely
filled in.

We now find that of the
(

8
2

)

possible pairs of residual points 1, 2, . . . , 8,
the pairs which have not yet occurred form the graph shown in Figure 18.
These remaining pairs must occur in the E,F and G-lines, which each
contains exactly two residual points. So the E,F and G-lines must together
contain a 1-factorization of this graph.
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Figure 18: PP (7), the remaining pairs of residual points

At this point we give names to the letters appearing in the last three
quad lines, calling them e1, e2, e3, e4, f1, f2, f3, f4, g1, g2, g3, g4. Refer to
Figure 19. Notice that e1, e2, e3, e4 must appear in distinct E-lines; that
f1, f2, f3, f4 must appear in distinct F -lines; and that g1, g2, g3, g4 must
appear in distinct G-lines.

Consider now the letters a1, a2, a3. They must occur in the quad lines.
They occur with v, x, z in the residual lines (see Figure 17). This leaves
only three possible lines in the quad lines where they may occur. Simi-
larly for b1, b2, b3 and c1, c2, c3 and d1, d2, d3. As the points have not yet
been distinguished, their placement in the quad lines is unique – refer to
Figure 19. Of these 12 letters, six of them, b2, b3, c2, c3, d2, d3 do not occur
with A in the quad lines, and so must occur in the A-lines. It is easy to
verify that they cannot occur in the lines containing v, x or z. Therefore
they occur in the first two A-lines, with three occurring per line. Now b2c2
and c3d3 occur in quad lines. Hence, it must be the triples b2c3d2 and
b3c2d3 which occur in the A-lines. At this point we do not as yet know
which triple occurs with point 1, and which occurs with point 2. Assume
for the time being that they are placed in the A-lines as in Figure 19.
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Figure 19: PP (7)

We now observe that b2 has already occurred with the residual points
1, 3, 4, and so must still occur with 2, 5, 6, 7, 8. We also find that b2 has
occurred with points B,C,G in the quad lines, and so must appear once
in the E-lines, once in the F -lines, and once in the D-lines. In the E and
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F -lines, b2 occurs in a line containing two residual points. Referring to
Figure 18, we see that b2 occurs with two points of 1, 3, 6, 7 or two points
of 2, 4, 5, 8 when it occurs in the E and F -lines. Comparing this with the
points 2, 5, 6, 7, 8, we see that in the D-lines, b2 must appear with point 8,
and not 7. This implies that b2 occurs with the pairs 25 and 67 in the E
and F -lines.

We then turn to the D-lines. D must still occur with a1, a2, b1, b2, c1, c2,
and these points must occur in the first two D-lines, in two triples. Since
a1b1 and b2c2 have already occurred in the quad lines, we find that the
distribution must be as shown in the D-lines of Figure 19. Continuing as
in the above paragraph, we find that the distribution of the ai, bi, ci and di
in the A,B,C and D-lines is completely determined by the initial choice
which placed b2 in the first A-line. If we had placed it instead in the second
A-line, the remaining distribution in the B,C and D-lines would also be
forced. This second possibility is obtained by interchanging the triples in
the first two rows of the A,B,C and D-lines.

The pairs of residual points that the ai, bi, ci and di must occur with
in the E,F and G-lines are then also forced. The result is shown in the
following table, for each of the two possible distributions. As each possible
pair of residual points occurs exactly twice in each half of the table, we
conclude that the E,F,G-lines each contain exactly two of the ai, bi, ci and
di.

point {1, 3, 6, 7} {2, 4, 5, 8} {1, 3, 6, 7} {2, 4, 5, 8}
a1 37 45 36 48
a2 36 58 67 45
a3 67 48 37 58
b1 16 28 17 25
b2 67 25 16 58
b3 17 58 67 28
c1 17 24 13 28
c2 13 48 37 24
c3 37 28 17 48
d1 13 25 16 24
d2 36 24 13 45
d3 16 45 36 25

choice 1 choice 2

Figure 20: Pairs of residual points in the E,F and G-lines.

Referring to the quad lines, we see that E,F and G have each occurred
with four of the ai, bi, ci and di, and so must each occur with 8 more
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of these points. The points which must still occur with both E and F are
a3, b2, c3, d1, and they must occur in pairs. Now a3d1 and b2c2 have already
occurred. This leaves four pairs for the E,F -lines. A similar situation
exists for the E,G-lines, and for the F,G-lines. The possible pairs for the
E,F,G-lines are shown in Figure 21.

a3

c2

b2

d1

EF

a2

d2

b3

c1

EG

a1

d3

c3

b1

FG

Figure 21: PP (7), pairs of ai, bi, ci, di in the E,F,G-lines

At this point we again have to make a choice. Suppose that the pair
a3b2 occurs in an E-line. Referring to the left side of the table in Figure 20,
we see that the pair of residual points common to a3 and b2 is 67. It follows
that a3b267 occur together in an E-line. By Figure 21, c2d113 also occurs in
an E-line. The F -lines are then forced to contain a3c248 and b2d125. This
in turn forces the remaining pairs in the E,F,G-lines. If we had chosen
a3c2 instead of a3b2 for the E-lines, the distribution would again have been
forced. The two possible outcomes for each of the two previous choices
are shown in Figure 22. Notice that the only difference between the first
and third possibilities is in the residual points 1, 2, . . . , 8; similarly for the
second and fourth possibilities.

We turn now to the residual lines. The yellow points u, v, w, x, y, z
must still occur two more times each in the 12 remaining residual lines.
Point u has already occurred with b1, b2, b3, c1, c2, c3 in the residual lines
– see Figure 17. Point u has occurred with a3d1 in the quad lines – see
Figure 19. Therefore it must still occur with a1, a2, d2, d3. But the pairs
a1d3 and a2d2 occur in the E,F,G-lines – see Figure 21. We conclude that
u occurs with the pairs a1d2 and a2d3 in the residual lines. A similar line
of reasoning for v, w, x, y, z completely determines the distribution of the
ai, bi, ci, di in the residual lines – see Figure 23.

We are now close to completing PP (7). We give the names h1, . . . , h6, k1,
. . . , k6 to the remaining letters in the quad lines, as shown in Figure 24.
Consider the letters h1, k1 in the first quad line. They must each occur
three times in the residual lines. They have both occurred with a1, b1 and
y in a quad line. There are exactly six residual lines which do not contain
these points. Two of the possible six lines contain z, so that one of the
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Figure 22: PP (7), 1-factorizations in the E,F,G-lines

z-lines contains h1 and the other k1. Since h1 and k1 have not been dif-
ferentiated, we are free to place them as shown in Figure 24. In a similar
way, we find that one occurrence of each of h2, k2, . . . , h6, k6 can be placed
uniquely in the residual lines.

Now h1 and k1 have occurred with A,B,E, and so must still occur in
the F and G-lines. They have both occurred with a1, b1. Furthermore,
h1 has occurred with c1, d1; and k1 has occurred with c2, d2. Referring to
Figure 22, we see that in each possible situation for the F,G-lines, the place-
ment of h1 and k1 is forced. Similarly the placement of h2, k2, . . . , h6, k6
in the E,F,G-lines is forced. The result is shown in Figure 25. Notice in
particular that two of the arrangements of the E,F,G-lines are not possible
– h1, k1 cannot be placed in the G-lines for the second and fourth arrange-
ments. At this point, h1 has occurred with a1, b1, c1, d1, a3, c2, a2, d2. It
must still occur with b2, b3, c3, d3. This forces its remaining two occur-
rences in the residual lines. Similarly for h2, k2, . . . , h6, k6. The result is
shown in Figure 26. Referring to Figure 25, we find that e1 has occurred
with a3, b2, h2, h5. This leaves only two possible residual lines in which e1
can appear. Since e1 must appear twice in the residual lines, its place-
ment there is forced. In a similar way, we find that the placements of
e1, . . . , e4, f1, . . . , f4, g1, . . . , g4 in the residual lines is forced. This is also
shown in Figure 26.

We must still complete the A,B,C,D-lines. Notice that h1 and k1
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Figure 23: PP (7), the remaining residual lines
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Figure 24: PP (7), quad lines and residual lines

must still occur in the C,D-lines. Also, h1 has already occurred with
v, x, y, z. Therefore it must occur with u in the C-lines, and w in the D-
lines. Consequently, it appears with points 2, 7 in the C-lines, and with
1, 5 in the D-lines. Referring to the third row of Figure 25, we see that h1

occurs with points 3, 7 there. Since this is clearly impossible, we conclude
that the first row of Figure 25 is the correct arrangement of the E,F,G-
lines. This corresponds to the arrangement of the A,B,C,D-lines shown
in Figure 19. The placement of the remaining points h1, . . . , h6, k1, . . . , k6
is then forced.

There remain the twelve points e1, . . . , e4, f1, . . . , f4, g1, . . . , g4. Each
must occur once in the A,B,C,D-lines. We find that e1 has occurred so far
with u, v, y, z, a1, a3, b1, b2, c1, d2, h2, h3, h4, h5, h6, k2, k5, k6, f3, f4, 6, 7 (see
Figures 24, 25 and 26). This forces it to occur in the second A-line, second
B-line, fourth C-line and fourth D-line. Similarly all the remaining twelve
points are completely forced. See Figure 27. It is tedious, but easy to verify
that each pair of points occurs exactly once in the design. This completes
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Figure 25: PP (7), the E,F,G-lines

the unique construction of PP (7) from an initial non-Fano quad. We state
this as:

Theorem 3 The projective plane of order 7 is completely determined by
any non-Fano quad. It has an automorphism group mapping any quad to
any other quad.

Proof . The initial quad {A,B,C,D} was chosen arbitrarily. The comple-
tion of the plane was unique.

5 Conclusion

Simple combinatorial proofs of the uniqueness of the planes of orders 3, 4,
and 5, and the non-existence of PP (6) have been given by R. Stanton
in [7]. Stanton has also recently proved an elegant “Pattern Theorem” for
the distribution of points in planes containing a non-Fano quad [8]. The
only existing proof of the uniqueness of PP (8) appears to be an exhaustive
computer search. In [2], Hall points out the need for further methods to
prove the uniqueness of PP (8). The sum of squares theorem may be useful
for this.
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Figure 26: PP (7), completion of the residual lines
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Figure 27: PP (7), completion of the A,B,C,D-lines
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