On Reconstructing Graphs from n-2Cards

William Kocay* St. Paul's College, Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2 bkocay@cc.umanitoba.ca

J. of Comb. Math. and Comb. Computing 80 (2012), 5-10.

To Ralph G. Stanton, in memoriam.

Abstract

Let G and H be graphs on n+2 vertices $\{u_1, u_2, \ldots, u_n, x, y\}$ such that $G - u_i \cong H - u_i$, for $i = 1, 2, \ldots, n$. Recently Ramachandran, Monikandan, and Balakumar have shown in a sequence of two papers that if $n \ge 9$, then $|\varepsilon(H) - \varepsilon(G)| \le 1$. In this paper we present a simpler proof of their theorem, using a counting lemma.

1 Introduction

Let G and H be graphs on n + 2 vertices $\{u_1, u_2, \ldots, u_n, x, y\}$ such that $G-u_i \cong H-u_i$, for $i = 1, 2, \ldots, n$. Recently Ramachandran and Monikandan [3] and Monikandan and Balakumar [1] have shown in a sequence of two papers that if $n \ge 9$, then $|\varepsilon(H) - \varepsilon(G)| \le 1$. Their proof is based on determining the partial structure of the graphs. In this paper we present a simpler proof of their theorem, using a counting lemma that requires only the degrees of the vertices.

Let d(u, G) denote the degree of vertex u in any graph G. The following lemma is from [2].

^{*}W. Kocay's research is partially funded by an NSERC discovery grant

Lemma 1.1 Let $m \ge 0$ and let G and H be as above. Suppose that $\varepsilon(H) = \varepsilon(G) + m$. Then $d(u_i, H) = d(u_i, G) + m$, for i = 1, 2, ..., n.

Proof. $d(u_i, H) = \varepsilon(H) - \varepsilon(H - u_i) = \varepsilon(G) + m - \varepsilon(G - u_i) = d(u_i, G) + m.$

Suppose now that $m \geq 2$. Choose a vertex $u_1 \in U$, and let p be an isomorphism mapping $H - u_1$ to $G - u_1$. Then p is a permutation of $V - u_1$. Let $G' = G - u_1$ and $H' = H - u_1$. Consider a cycle (v_1, v_2, \ldots, v_k) of p. Is it possible that all $v_i \in U$? Let $\alpha = d(v_1, H')$. In H' there are α edges incident on v_1 , hence in G' there are α edges incident on $p(v_1) = v_2$, so $d(v_2, G') = \alpha$. But $d(v_2, H) = d(v_2, G) + m$, so that $d(v_2, H') \geq \alpha + 1$. Continuing in this way, we find that $d(v_3, H') \geq \alpha + 2$, etc, until we reach $d(v_k, H') \geq \alpha + k - 1$ from which it follows that $d(v_1, H') \geq \alpha + k$, a contradiction. It follows that every cycle of p contains either x or y, so that there are at most two cycles.

Let H[u, v] denote the number of edges of H joining u to v (either 0 or 1). Consider any $u \in U$, where $u \neq u_1$. Since d(u, H) = d(u, G) + m, we can write:

(a) d(u, H') = d(u, G') + m and $H[u_1, u] = G[u_1, u]$; or (b) d(u, H') = d(u, G') + m - 1 and $H[u_1, u] = 1 + G[u_1, u]$; or (c) d(u, H') = d(u, G') + m + 1 and $H[u_1, u] + 1 = G[u_1, u]$.

Let there be a of the first type, b of the second type, and c of the third type. Let $h = H[u_1, x] + H[u_1, y]$ and $g = G[u_1, x] + G[u_1, y]$

Lemma 1.2 Let $m \ge 1$. Then

ma + (m-1)b + (m+1)c = mn - 2m + h - g

Proof. We have a + b + c = n - 1, since there are n - 1 vertices in $U - u_1$. Then $d(u_1, H) - d(u_1, G) = m = b - c + h - g$, so that c = b - m + h - g, from which it follows that a + 2b = n + 1 - h + g. Hence ma + (m - 1)b + (m + 1)c = mn - 2m + h - g.

If there is a sequence x, v_1, v_2, \ldots, v_k of consecutive vertices in a cycle of p, where each $v_i \in U$, then $d(v_i, H')$ increases by m - 1, m, or m + 1 for each i. If k = n - 1, then starting with $d(v_1, G') =$

d(x, H'), we find that $d(v_k, H') = d(x, H') + ma + (m-1)b + (m + 1)c = mn - 2m + h - g + d(x, H')$. If $m \ge 2$, this expression is $\ge 2n - 4 + h - g + d(x, H') > n$, if $n \ge 7$, since $h - g \ge -2$. But each $d(v_i, H') \le n$. Hence we conclude that if $n \ge 7$, there are exactly two sequences of consecutive vertices of U in p, one starting from x, and one starting from y.

Let x, v_1, v_2, \ldots, v_k be one sequence of consecutive vertices in a cycle of p, and let y, w_1, w_2, \ldots, w_j be the other, where each $v_i, w_i \in U$ and k + j = n - 1. It is convenient to take $v_0 = x$ and $w_0 = y$. Let there be a_1, b_1, c_1 vertices of type (a),(b),(c), respectively, in v_1, v_2, \ldots, v_k , and a_2, b_2, c_2 in w_1, w_2, \ldots, w_j .

Lemma 1.3 *Let* $0 \le i \le k - 1$ *. Then*

$$d(v_{i+1}, H') = d(v_i, H') + m + G[u_1, v_{i+1}] - H[u_1, v_{i+1}]$$

Similarly, if $0 \leq i \leq j-1$, then

$$d(w_{i+1}, H') = d(w_i, H') + m + G[u_1, w_{i+1}] - H[u_1, w_{i+1}]$$

Proof. Since p maps H' to G' we have $d(v_{i+1}, G') = d(v_i, H')$. We also have $d(v_{i+1}, H) = d(v_{i+1}, G) + m$. But $d(v_{i+1}, H') = d(v_{i+1}, H) - H[u_1, v_{i+1}]$ and $d(v_{i+1}, G') = d(v_{i+1}, G) - G[u_1, v_{i+1}]$. The result follows.

It follows that $d(v_k, H') = d(x, H') + ma_1 + (m-1)b_1 + (m+1)c_1$. Similarly $d(w_j, H') = d(y, H') + ma_2 + (m-1)b_2 + (m+1)c_2$. Adding these gives $d(v_k, H') + d(w_j, H') = ma + (m-1)b + (m+1)c + d(x, H') + d(y, H')$, which reduces to mn - 2m + h - g + d(x, H') + d(y, H').

Lemma 1.4 If $n \ge 9$ then $|\varepsilon(H) - \varepsilon(G)| \le 2$.

Proof. We have $d(v_k, H'), d(w_j, H') \leq n$. If m > 2, the above formula gives $mn - 2m + h - g + d(x, H') + d(y, H') \leq 2n$, or $n \leq 2m/(m-2) - \{h - g + d(x, H') + d(y, H')\}/(m-2)$. Since $h - g \geq -2$ and $m \geq 3$, this gives $n \leq 8$, a contradiction.

At this point we take m = 2 and $n \ge 9$. The above formula becomes

$$2n - 4 + h - g + d(x, H') + d(y, H') = d(v_k, H') + d(w_i, H') \quad (*)$$

We now abbreviate the notation somewhat, in order to streamline the proof of the main theorem. We have $H' = H - u_1$ and $G' = G - u_1$. Here we have chosen u_1 as a vertex in U with the *largest* degree in H. Since we will be working mostly with the graphs H and H', we write dx' = d(x, H') and dy' = d(y, H'). Similarly for dv'_k and dw'_j . Similarly, we write dx for d(x, H), du_1 for $d(u_1, H)$, etc. We recall that $h = H[u_1, x] + H[u_1, y]$ and $g = G[u_1, x] + G[u_1, y]$. We write $u \longrightarrow v$ to indicate that u is adjacent to v.

Theorem 1.5 Let G and H be graphs on n+2 vertices, where $n \ge 9$, such that $H - u_i \cong G - u_i$ for i = 1, ..., n. Then $|\varepsilon(H) - \varepsilon(G)| \le 1$.

The proof requires only the degrees of the vertices. We assume that $\varepsilon(H) = \varepsilon(G) + 2$ and obtain a contradiction. We use the inequality (*) to limit the values of the parameters dx', dy', dv'_k, dw'_j , and compare the smallest degrees of $H - v_1$, $H - w_1$, $G - v_1$, and $G - w_1$.

Case 1. dx' = dy' = 0.

This implies that $dv'_k, dw'_j \leq n-2$. It then follows from (*) that $2n-4+h-g \leq 2n-4$, so that $h \leq g$. We observe first that if h = 0, then H and H'' both have at least two vertices of degree 0 (namely x and y), whereas G'' has at most one vertex of degree 0 (namely v_1 or w_1). Therefore $H'' \not\cong G''$. Hence, we can assume that $h \geq 1$.

If h = 1, then $H - v_1$ and $H - w_1$ both have exactly one vertex of degree 0. Therefore $G - v_1$ and $G - w_1$ must each have one vertex of degree 0. It follows that $u_1 \not\longrightarrow v_1, w_1$ in G. But then $G - v_2$ has two vertices of degree 0, whereas $H - v_2$ has just one. Hence, we can assume that h = 2.

We now find that $H - v_1$ and $H - w_1$ both have exactly two vertices of degree 1. Therefore $G - v_1$ and $G - w_1$ also have exactly two vertices of degree 1. Therefore $u_1 \longrightarrow v_1, w_1$ in G, so that $d(v_1, G) = d(w_1, G) = 1$, and one of v_2, w_2 has degree 1 in G. Consequently $dv_1 = dw_1 = 3$, so that $dv'_1, dw'_1 \ge 2$. But this implies that $d(v_2, G'), d(w_2, G') \ge 2$, a contradiction. Case 2. $dx' \neq 0$ and dy' = 0.

This implies that $dv'_k, dw'_j \leq n-1$. It then follows from (*) that $2n-4+h-g+dx' \leq 2n-2$. If $u_1 \not\rightarrow y$ in H, then $H-w_1$ will have one vertex of degree 0, whereas $G-w_1$ will have no vertices of degree 0. Hence we must have $u_1 \longrightarrow y$ in H, so that $h \geq 1$.

We next observe that in $H - w_1$, vertex y has degree 1. Therefore $G - w_1$ must have a vertex of degree 1, which can only be v_1 . It follows that $u_1 \not\rightarrow v_1$ in G, and that $1 = d(v_1, G') = dx'$. Therefore v_1 is adjacent to exactly one vertex z in G', and in H', x is adjacent to only $p^{-1}(z)$. Then G - z has a vertex of degree 0, but H - z does not, a contradiction.

Case 3. dx' = 0 and $dy' \neq 0$.

This is identical to Case 2, interchanging x and y, and j and k.

Case 4. $dx' \neq 0$ and $dy' \neq 0$.

We have $dx', dy' \ge 1$. Let $\delta = dx' + dy' - 2$. Then $\delta \ge 0$. Without loss of generality, we take $n \ge dv'_k \ge dw'_i$.

4.1 $dv'_k = n$. Then $du_1 \ge dv_k \ge n$. If $u_1 \longrightarrow v_k$ in H, then $du_1 = dv_k = n + 1$, so that $u_1 \longrightarrow x, y$ in H, which implies that h = 2. If If $u_1 \not \to v_k$ in H, then since $du_1 \ge n$, we again have $u_1 \longrightarrow x, y$ in H and h = 2. By (*), $2n - 4 + 2 - g + 2 + \delta = n + dw'_j$, which reduces to $g = n - dw'_j + \delta$. Now if $dw'_j = n$, then $w_j \longrightarrow x, y$ in H, so that $\delta \ge 2$, which implies that $g = \delta = 2$. If $dw'_j = n - 1$, then w_j is adjacent to at least one of x, y in H, so that $\delta \ge 1$, which gives g = 2 and $\delta = 1$. If $dw'_j = n - 2$, this gives g = 2 and $\delta = 0$. So g always equals 2, and dx', dy' are forced. They are either (2, 2), (2, 1) or (1, 1) according as dw'_j is n, n - 1, or n - 2. Note that $dw'_j \le n - 3$, since this would give $g \ge 3$.

We now find that the two smallest degrees of $H - v_1$ and $H - w_1$ are dx' + 1, dy' + 1. These must also be the smallest degrees of $G - v_1$ and $G - w_1$. It follows that $u_1 \longrightarrow v_1, w_1$ in G, so that $d(v_1, G) = dx' + 1$ and $d(w_1, G) = dy' + 1$. Therefore $dv_1 = dx' + 3$ and $dw_1 = dy' + 3$, so that $dv'_1 \ge dx' + 2$ and $dw'_j \ge dy' + 2$. But then the smallest degrees of $G - v_1$ and $G - w_1$ cannot be dx' + 1, dy' + 1, a contradiction.

4.2 $dv'_k = n-1$. By (*), we have $2n-4+h-g+2+\delta = n-1+dw'_j$, which reduces to $g = n-1+h+\delta - dw'_j$. If $u_1 \not\longrightarrow v_k, w_j$ in H, then

since $du_1 \ge n-1$, we must have $u_1 \longrightarrow x, y$ in H, so that h = 2. If u_1 is adjacent to v_k but not to w_j , then $du_1 \ge n$, so that we again have h = 2. Then $g = n + 1 + \delta - dw'_j$. We must have $dw'_j = n - 1$, g = 2, and $\delta = 0$. Therefore dx' = dy' = 1.

If u_1 is adjacent to w_j but not to v_k , then $h \ge 1$. If $u_1 \longrightarrow v_k, w_j$ in H, then $du_1 \ge n$ and so $h \ge 1$. Then $g \ge n + \delta - dw'_j$. We either have $dw'_j = n - 1$ (which forces h = 2), g = 2, and $\delta = 0$ as in the previous paragraph, or else $dw'_j = n - 2$, h = 1, g = 2, and $\delta = 0$. Therefore dx' = dy' = 1.

In the situation when h = 2, we find that $H - v_1$ and $H - w_1$ both have two vertices of degree 2 as the smallest degrees, namely x and y. Therefore $G - v_1$ and $G - w_1$ must also have two vertices of degree two. Hence $u_1 \longrightarrow v_1, w_1$ in G, so that $d(v_1, G) = d(w_1, G) = 2$, from which $dv_1 = dw_1 = 4$ and $dv'_1, dw'_1 \ge 3$. But then $G - v_1$ and $G - w_1$ do not have two vertices of degree two, a contradiction.

In the situation when h = 1, $H - v_1$ and $H - w_1$ will have vertices x and y with degrees 1 and 2. Therefore $G - v_1$ and $G - w_1$ also have smallest degrees 1 and 2. It follows that $u_1 \not\rightarrow v_1, w_1$ in G. Therefore $dv_1 = dw_1 = 3$, and $u_1 \longrightarrow v_1, w_1$ in H. Then at least one of $H - v_1$ and $H - w_1$ will have vertices v_k, w_j with largest degrees n - 1, n - 2. But since g = 2, the two largest degrees of $G - v_1$ and $G - w_1$ will both be n - 1, a contradiction.

4.3 $dv'_k = n-2$. By (*), we have $2n-4+h-g+2+\delta \leq 2n-4$, which gives $g \geq 2+h+\delta$, which requires g = 2, h = 0, and $\delta = 0$. But $du_1 \geq n-2$, so that u_1 must be adjacent to at least one of v_k, w_j . This forces $du_1 \geq n$, so that $h \geq 1$, a contradiction.

This completes the proof of the theorem.

References

- [1] S. Monikandan and J. Balakumar "On pairs of graphs having n-2 cards in common', Ars Combinatoria, to appear, 14 pp.
- [2] W.J. Myrvold, "The degree sequence is reconstructible from n-1 cards", Discrete Maths. 102 (1992) pp.187-196.
- [3] S.Ramachandran and S. Monikandan "Pairs of graphs having n-2 cards in common", Ars Combinatoria, to appear, 16 pp.