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Abstract
Embeddings of graphs on the torus are studied. All 2-cell embeddings

of the vertex-transitive graphs on 12 vertices or less are constructed. Their
automorphism groups and dual maps are also constructed. A table of em-
beddings is presented.

1. Toroidal Graphs

Let G be a 2-connected graph. The vertex and edge sets of G are V (G) and
E(G), respectively. E(G) is a multiset consisting of unordered pairs {u, v},
where u, v ∈ V (G), and possibly ordered pairs (v, v), as the graphs G will
sometimes have multiple edges and/or loops. We write the pair {u, v} as
uv, and the ordered pair (v, v) as vv, which represents a loop on vertex v. If
u, v ∈ V (G) then u → v means that u is adjacent to v (and so also v → u).
The reader is referred to Bondy and Murty [2], West [11], or Gross and
Tucker [3] for other graph-theoretic terminology. An embedding of a graph
on a surface is represented combinatorially by a rotation system [3]. This
consists of a cyclic ordering of the incident edges, for each vertex v. Let v be
a vertex of G, incident on edges e1, e2, . . . , ek. We write v → (e1, e2, . . . , ek)
to indicate the cyclic ordering for v in a rotation system. If some ei is
a loop vv, then this loop must appear twice in the cyclic adjacency list
(e1, e2, . . . , ek), because walking around the vertex v along a small circle in
the torus will require that a loop vv be crossed twice. Thus, we assume
that if ei is a loop vv, there is another e′i in the list corresponding to the
same loop vv. Since every loop must appear twice in the rotation system,
a loop contributes two to the degree of a vertex. If ei with endpoints uv is
not a loop, then it will appear in the cyclic adjacency list of both vertices
u and v. Given ei in the list for u, the corresponding ej in the list for v is
given by the rotation sytem. Figure 1 shows an embedding of the complete
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graph K5 on the torus, together with its rotation system. Embeddings on
the torus are also called torus maps.

Fig. 1, An embedding of K5 and its rotation system
The torus is represented here by a rectangle surrounded by a larger, shaded
rectangle. See [6] for more details on this representation of the torus. The
outer shaded rectangle contains copies of the vertices and edges of the em-
bedding, thereby allowing us to easily visualize the faces of the embedding.

An embedding is called a 2-cell embedding if every face is equivalent to
a disc (ie, 2-cell). We require that all embeddings be 2-cell embeddings, and
that all graphs be 2-connected. A 2-cell embedding on the torus satisfies

1.1 Euler’s formula: n + f − ε = 0,

where n is the number of vertices of G, f is the number of faces in the
embedding, and ε is the number of edges. A cycle in the torus is said to
be essential if cutting the torus along that cycle results in a cylinder (not
a disk or a torus with a hole). A cycle which is not essential is called a flat
cycle (equivalently: null-homotopic). We require that all facial cycles of
embeddings contain at least 3 edges (ie, no digons or loops as facial cycles).
Loops are allowed if they embed as essential cycles. Multiple edges are
also allowed, so long as any cycle composed of two multiple edges is an
essential cycle. This limits the number of loops allowed on a single vertex
to 3, and the number of multiple edges connecting a pair of vertices to 4.
We must allow loops and multiple edges, because the duals of the graphs
we are interested in often have loops or multiple edges. See [6] for more
information on loops and multiple edges in torus maps.

1.2 Dual Maps

Corresponding to every embedding of a graph G on the torus is a dual map,
which we will denote by G∗, or dual(G) (see West [11]). The vertices of G∗
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are the faces of G. G∗ is constructed by placing a new vertex in each face of
G, and joining two new face-vertices by an edge whenever the corresponding
faces of G share a common edge. Dual maps often have multipe edges or
loops. Some embeddings are self-dual , that is, they are isomorphic to their
duals. The embedding of K5 shown in Figure 1 has this property.

A rotation system is sufficient to determine the faces and the dual map
of an embedding [3, 6]. Given an edge ei = uv appearing in the rotation
list for u, we can find the face to the right of ei by executing the following
loop:

given edge ei incident on u
e := ei

repeat
v := other endpoint of e
e′ := edge corresponding to uv in the rotation list for v
e := edge previous to e′ in the rotation list for v
u := v

until e = ei

This loop walks around the boundary of the face determined by ei = uv.
By walking around all the faces in the embedding, we find the dual graph.

The recent book [4] by Jackson and Visentin contains a catalogue of
small graphs on various surfaces. In this paper we compute all 2-cell em-
beddings of some small graphs on the torus. The results are summarized
in a table, and a number of diagrams are also provided. In particular, we
focus on the vertex-transistive graphs up to 12 vertices. (A graph G is
vertex-transitive if its automoprhism group is transitive on V (G)). The ta-
bles also give information on the automorphism groups of the embeddings,
the orientability of the embeddings, and on their dual maps in the torus.
A number of other miscellaneous graphs are also included.

In order to calculate the automorphism group of an embedding and to
distinguish different isomorphism types, we have converted each torus map
to a digraph, and then used the graph isomorphism program of Kocay [5]
to calculate the automorphism group, and to distinguish non-isomorphic
embeddings.

2. Medial Digraphs, Automorphism Groups

Let G be a graph. In general, there are many possible rotation systems
for G. Each rotation system will correspond to an embedding on some
surface. Given a rotation system t, we write Gt to indicate G with the
rotation system t. We will refer to Gt as an embedding of the graph G.
Given two rotation systems t1 and t2, we need to distinguish whether the
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embeddings Gt1 and Gt2 are equivalent. To do this we need to consider
mappings θ : V (G) → V (G). Consider first a simple graph G (ie, no loops
or multiple edges). If θ is a mapping of V (G) and v ∈ V , then vθ indicates
that vertex to which θ maps v. If an edge ei has endpoints uv, then eθ

i

indicates the edge with endpoints uθvθ. Similarly, Gθ indicates the graph
with vertex set V (G) and edge set E(G)θ. We will know from the context
whether the superscript represents a mapping or a rotation system. In case
G has multiple edges and/or loops, then Gθ will also have multiple edges
and/or loops.

2.1 Definition. Let G and H be graphs on n vertices with rotation sys-
tems t1 and t2, respectively. The embeddings Gt1 and Ht2 are said to be
isomorphic if there exists a bijection θ : V (G) → V (H) such that for every
v ∈ V (G), v → (e1, e2, . . . , ek) in Gt1 if and only if vθ → (eθ

1, e
θ
2, . . . , e

θ
k) in

Ht2 . We write Gt1 ∼= Ht2 .

This defines isomorphism of embeddings combinatorially. If the em-
beddings Gt1 and Ht2 are isomorphic, then it is clear that the graphs G and
H are also isomorphic, as the embedding-isomorphism θ is also a graph iso-
mophism. However, G may admit many distinct (pairwise non-isomorphic)
embeddings on the torus. Note also that isomorphic embeddings are not
always isotopic, that is, toroidal embeddings Gt1 and Gt2 may be isomor-
phic, but there may be no homeomorphism of the torus that maps Gt1 to
Gt2 without cutting the torus. Such graphs Gt1 and Gt2 can look very
different when drawn on the torus, even though they are considered iso-
morphic. An example is shown in Figure 2. The graph here consists of two
vertices, each with a loop, and joined by 3 multiple edges. The embeddings
are combinatorially isomorphic, but non-isotopic. In order to transform one
embedding into the other, it is necessary to cut the torus along an essential
cycle, creating a cyclinder. One end of the cylinder is then given one full
twist, and the ends are then glued back together to create a torus. This is
called a Dehn twist [1].

Fig. 2, Two isomorphic, non-isotopic embeddings
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2.2 The Torus as Oriented Surface

The torus is an oriented surface. We assume that an orientation has been
given to the surface, and that one side is called the outside and the other
the inside. When a graph Gt with a toroidal rotation system t is embedded
on the torus, we embed it on the outside. If Gt is then viewed from the
inside, the rotation system of G will appear to be reversed. Let t′ be
the rotation system obtained by reversing all cyclic adjacency lists of t.
Clearly Gt and Gt′ are isomorphic as graphs. However they can be either
isomorphic or non-isomorphic as embeddings. If Gt ∼= Gt′ we say that Gt

is non-orientable. Otherwise Gt is orientable. The emeddings of G on the
torus can be divided into orientable and non-orientable embeddings. Each
orientable embedding Gt will be paired with its converse Gt′ .

2.3 Automorphism Group

Given a graph G, we denote the automorphism group of G by aut(G). This
consists of all permutations θ of V (G) such that E(G)θ = E(G). In case G
has multiple edges and/or loops, multiple edges with the same endpoints,
or loops on the same vertex are considered equivalent under this definition,
that is, we are not permuting the edges within a set of multiple edges or a
set of loops.

Given an embedding Gt and a permutation θ ∈ aut(G), we can permute
the vertices of G, and hence the cyclically ordered adjacency lists of t, by
θ, to obtain an embedding (Gt)θ.

2.4 Definition. Let Gt be an embedding of G. The automorphism group
of Gt is aut(Gt), consisting of all permutations θ ∈ aut(G) such that Gt =
(Gt)θ.

Note that aut(Gt) ≤ aut(G). In general, aut(Gt) &= aut(G).
In order to distinguish the embeddings of G on the torus, and to com-

pute the automorphism group of an embedding, we construct a digraph
M(Gt) to represent an embedding Gt of a graph G with a toroidal rotation
system t, called the medial digraph. In a digraph, we write u → v to indi-
cate that there is an edge directed from vertex u to v. We say that edge
uv is an out-edge with repsect to u, and an in-edge with repsect to v. If
also v → u, then we say that the edge uv is a bi-edge. Strictly speaking,
there are two oppositely directed edges here, (u, v) and (v, u), but it is more
convenient to refer to them as a single, undirected bi-edge uv.

2.5 Definition. Let Gt be an embedding of G on the torus. We define
M(Gt), the medial digraph of Gt. Given the edge multiset E(G), define
a multiset E′(G) consisting of E(G), plus a double (mate) (v, v)′ of every
loop (v, v) ∈ E(G).
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1) V (M(Gt)) consists of V (G) ∪ E′(G).
2) Let v → (e1, e2, . . . , ek) in Gt. Then in M(Gt) there are edges

a) v → ei and ei → v, for all i; (ie, bi-edges vei)
b) ei → ei+1, for all i, where k + 1 is replaced by 1; (ie, out-edges)
c) If ei is a loop, with mate e′i having the same endpoints, then

ei → e′i and e′i → ei.

An example of an embedding G and its medial digraph is shown in
Figure 3. Here G consists of a graph with one vertex and two loops. M(G)
is shown drawn on the torus, but the definition of M(Gt) does not define
an embedding.

Fig. 3, A graph G with 2 loops, and its medial digraph

2.6 Theorem. Let Gt1 and Ht2 be graphs with toroidal rotation sys-
tems t1 and t2. Then Gt1 ∼= Ht2 if and only if M(Gt1) and M(Ht2) are
isomorphic as digraphs.
Proof . If Gt1 ∼= Ht2 , with isomorphism θ, it is clear that θ extends to an
isomorphism of M(Gt1) and M(Ht2). Conversely, assume that M(Gt1) and
M(Ht2) are isomorphic as digraphs, with isomorphism θ : V (M(Gt1)) →
V (M(Ht2)). We show that Gt1 and Ht2 are isomorphic as embeddings.
Suppose first that G has minimum degree at least three. The vertices of
M(Gt1) are V (G) ∪E′(G). If v ∈ V (G), then all incident edges in M(Gt1)
are bi-edges. If ei ∈ E′(G), then in M(Gt1), ei has at least one incident edge
that is not a bi-edge. This distinguishes V (G) and E′(G) in M(Gt1). Let
v ∈ V (G) be given. Its adjacent vertices in M(Gt1) will be k ≥ 3 vertices
e1, ee, . . . , ek ∈ E′(G). They must induce a directed cycle in M(Gt1). An
ei will be a loop if and only if it is adjacent with a bi-edge to another ej

in the same directed cycle. Thus, given v, we can determine its incident
edges in G, including loops. This identifies the cyclic adjacency list of v in
Gt1 . It follows that the rotation system of Gt1 can be recovered from the
digraph structure of M(Gt1). Consequently Gt1 ∼= Ht2 .

Otherwise suppose that G has one or more vertices of degree 2. Not
every vertex can have degree 2, as a cycle has no 2-cell embedding. Consider
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a vertex v of degree two in M(Gt). Then v ∈ V (G). Let v → (e1, e2) be
the cyclic adjacency list of v in Gt. Then e1 and e2 cannot be a loop, since
G would then be a graph with a connected component consisting of a loop.
Therefore v is part of a path of degree-two vertices; the endpoints of this
path are vertices of degree 3 or more. Thus G consists of vertices of degree
3 or more, connected by paths consisting of degree-two vertices. Let u be
any vertex of degree k ≥ 3. In M(Gt1), u will be incident on bi-edges only,
and the vertices adjacent to u will induce a directed cycle. We can find
these vertices in M(Gt1). The vertices adjacent to u in M(Gt1) correspond
to edges of G. The remaining vertices of M(Gt1) correspond to the paths
of degree-two vertices in G. The remaining edges of M(Gt1) are all bi-
edges. We can distinguish the vertices corresponding to V (G) and E(G)
by their degree in M(Gt1). As before, it follows that the rotation system of
Gt1 can be recovered from the digraph structure of M(Gt1). Consequently
Gt1 ∼= Ht2 .

2.7 Automorphism Group

A consequence of Theorem 2.6 is that the automorphism group, aut(M(Gt)),
of the medial digraph describes the automorphisms of the embedding Gt

on the torus. We restrict the action of aut(M(Gt)) to V (G), and obtain
aut(Gt), the automorphism group of Gt, as the result. If G has no multi-
ple edges or loops, then every permutation of V (G) will induce a unique
permutation of E(G), so that aut(Gt) will be a faithful representation of
aut(M(Gt)). However, if G has multiple edges or loops, |aut(Gt)| may be
smaller than |aut(M(Gt))|.

3. Planar Graphs

If G is a graph with a planar rotation system p, then Gp indicates the
planar embedding of G. We could embed G on the torus by choosing an
arbitrary 2-cell (disk) D on the torus, view it as part of a planar surface,
and embed Gp into D. However this would not be a 2-cell embedding of G.
One way to construct a 2-cell toroidal embedding of G is as follows.

3.1 Definition. A theta graph H is a graph consisting of 2 vertices of
degree 3, connected by 3 paths whose internal vertices all have degree 2.

Assume that G is 2-connected, and that G is not a cycle. Then G
must contain a theta subgraph H. One way to choose a theta-subgraph
would be to choose an edge uv of G and the boundaries of the two faces on
either side of uv in the planar embedding. A theta-subgraph can also be
constructed by a depth-first search, breadth-first search, or other methods.
Let the two vertices of H of degree three be called A and B. Let the 3
paths connecting A and B be called P1, P2, and P3. The theta subgraph
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A B

P1

P2

P3

P1

P2

P3

divides the plane into 3 regions. Without loss of generality, assume that
P2 is contained inside the region bounded by the cycle formed by P1 ∪ P3.
Refer to Figure 4.

Fig. 4, A planar embedding of a theta subgraph
The cycles P1 ∪ P2, P2 ∪ P3 and P3 ∪ P1 divide the plane into regions.

The region of the plane inside P1 ∪ P2 contains a section of G, which we
call P3. Similarly, the region inside P2 ∪ P3 contains P1, and the region
outside P3 ∪ P1 contains P2. The rotation list for A can be described
as A → (P1, P3, P2, P1, P3, P2), where P1 indicates the first vertex of P1

adjacent to A; P3 indicates the vertices of P3 adjacent to A, etc. Similarly
the rotation list for B can be described as B → (P1, P2, P3, P1, P2, P3).

3.2 Theorem. Let Gp be an embedding of G with a planar rotation
system p, and a theta subgraph H, as described above. We construct a
new rotation system t for G, as follows. The rotation list for A is changed
to A → (P2, P3, P1, P1, P3, P2). All other vertices have the same rotation
list as before. Then Gt is now a toroidal 2-cell embedding.
Proof . Notice that we have altered the rotation list for A in only two ver-
tices. The theta subgraph H has a 2-cell embedding on the torus, in which
the 3 paths P1, P2 and P3 cut the torus into a single 2-cell. The embedding
of H can be chosen so that the rotation list of A in H is A → (P1, P3, P2),
and the list for B is B → (P1, P3, P2). This is illustrated in Figure 5. In Gp,
the rotation list for B is B → (P1, P2, P3, P1, P2, P3). We place the induced
subgraphs P1, P2 and P3 in the torus with the same rotation system as in
the plane. We need then only confirm that the connections to the vertices
of H are in the same cyclic order in the torus as in the plane. This can be
verified from the diagram. Since H is a 2-cell embedding, so is Gt.

This theorem provides a convenient way to convert a 2-cell embedding
on the plane, to a 2-cell embedding on the torus. It requires changing the
order of just two edges in the rotation list of one vertex. There are many
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P2

P1

P3A

B

P3 P1

P2

other transformations of the planar rotation system p that will also give a
toroidal rotation system.

Fig. 5, Converting a planar map to a toroidal map

4. Embeddings of Transitive Graphs

In this section we provide tables of the number of 2-cell embeddings of some
small, 2-connected, vertex-transitive graphs on the torus, from 4 vertices up
to 12 vertices, as well as some miscellaneous graphs. The transitive graphs
are those published by G. Royle [9] and B.D. McKay [8]. We include draw-
ings of some of the more interesting embeddings. Interesting embeddings
will tend to be those with more automorphisms, or those that are self-dual,
or have other special properties. The drawings are produced by the drawing
algorithms of [6]. The tables indicate whether an embedding is orientable
or non-orientable (eg., or., n.o.), and lists the automorphism group order of
its embedding (eg., g = 24), and some information about the dual. Some
embeddings are self-dual, that is, an embedding is isomorphic to its dual.
This is indicated in the table (eg., self(2) means 2 self-dual embeddings).
For many of the embeddings, the dual embedding has multiple edges or
loops, or is not transitive. In these cases, the entry in the table will be
blank.

4.1. Notation

Most of the vertex-transitive graphs up to 12 vertices can be described by
a simple notation. Kn represents the complete graph on n vertices, Km,n

a complete bipartite graph. Cn is a cycle on n vertices. If G is a graph,
its complement is denoted by G. If n is even, C+

n denotes a cycle Cn in
which each vertex is also joined to its diametrically opposite vertex. Cn(k)
indicates a cycle in which each vertex i is also joined to the i+kth vertex on
the cycle (therefore C+

n = Cn(n
2 )). Similarly, Cn(k1, k2) is a cycle in which

each vertex i is also joined to the i + kth
1 vertex and i + kth

2 vertex on the
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cycle. Cn(k+) indicates a cycle where n is even, and only the even vertices
i are joined to the i + kth vertex on the cycle. G × H denotes the direct
product of G and H. kG indicates k vertex disjoint copies of G. Qk stands
for the k-cube. Some graphs can be specified in several ways, for example,
Q3 = C4 × K2. The k-prism is the graph Ck × K2, also denoted Prism(k).
Given a planar graph G, we can form the truncation of G, denoted trunc(G),
by replacing every vertex v having cyclically incident edges (e1, e2, . . . , ek)
by a cycle formed by k new vertices e1, e2, . . . , ek. That is, we subdivide
every edge with two new vertices, and create cycles to replace the original
vertices of G.

A double cover of a graph G on n vertices and ε edges is a graph H with
2n vertices and 2ε edges, together with a two-to-one mapping θ : V (H) →
V (G) such that there is an induced mapping θ : E(H) → E(G) which is
also two-to-one.

An (n, 3)-configuration is a geometric configuration consisting of n
points and n lines such that every line is incident on 3 points, and ev-
ery point lies on 3 lines. The incidence graph (points versus lines) of an
(n, 3)-configuration is a 3-regular graph on 2n vertices. Often the duals of
toroidal embeddings will be incidence graphs of (n, 3)-configurations. For
example, the incidence graphs of the Fano configuration, the Pappus con-
figuration, and others appear as duals of toroidal embeddings. There are
unique (n, 3)-configurations when n = 7, 8; there are three configurations
when n = 9; 10 when n = 10; 31 when n = 11; and 228 when n = 12. See
Sturmfels and White [10] for more information on configurations.

A toroidal embedding G is a triangulation if every face is a triangle.
Every embedding can be completed to a triangulation by adding diagonals
across faces. Since every face in a triangulation has degree 3, it satisfies
3f = 2ε. Combining this with Euler’s formula n + f − ε = 0 gives 2n = f ,
or 6n = 2ε for a triangulation. Given an arbitrary triangulation, let there
be ni vertices of degree i, where i ≥ 3. Then summing the vertices and
their degrees gives the equations

n3 + n4 + n5 + . . . = n

3n3 + 4n4 + 5n5 + . . . = 2ε

Multiply the first equation by 6 and subtract the second to obtain

3n3 + 2n4 + n5 = n7 + 2n8 + 3n9 + . . .

Suppose that G is a k-regular toroidal embedding whose dual G∗ is
l-regular. Then kn = 2ε and lf = 2ε. Combining this with Euler’s formula
n + f − ε = 0 gives

2
k

+
2
l

= 1.
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K4 #1, g=3, n.o. K4 #2, g=4, n.o.

The only integral solutions are k = 3, l = 6; k = 4, l = 4; and k = 6, l = 3.
The embeddings of transitive graphs are naturally grouped into these fam-
ilies. The first and third solutions are just duals of each other, so that
there are three main families of transitive embeddings: 3-regular (honey-
comb pattern), 4-regular (rectangular pattern), and 6-regular (triangular
pattern). The 6-regular graphs are always triangulations whose duals are
the honeycomb graphs. The 4-regular graphs are often self-dual. These
patterns are evident in many of the diagrams. For example, K5 shown in
Figure 1 has a self-dual rectangular embedding. K7 (Figure 12) has a tri-
angular embedding whose dual is a honeycomb embedding of the Heawood
graph.

There are only 5 regular planar graphs whose planar duals are also
regular – they are the platonic solids. On the torus, there are infinite
families of graphs with these properties.

4.2. The 4-Vertex Graphs

There is only one transitive graph on 4 vertices with a 2-cell embedding,
namely K4. Its two embeddings are shown in Figure 6.

Fig. 6, The 2 embeddings of K4

4.3. The 5-Vertex Graphs

There is only one transitive graph on 5 vertices with a 2-cell embedding,
namely K5. Its 6 embeddings are shown in Figure 7.
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K5#1,g=20,n.o.,self-dual K5 #3, g=2, n.o.K5 #2, g=4, n.o.

K5 #5, g=2, or.K5 #4, g=1, n.o.
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K(3,3) #1, g=18, n.o. K(3,3) #2, g=2, n.o.

Fig. 7, The 6 embeddings of K5

4.4. The 6-Vertex Graphs

There are four 2-connected transitive graphs on 6 vertices with 2-cell em-
beddings, namely K3,3, the 3-prism, the Octahedron, and K6. K3,3 has two
embeddings, shown in Figure 8. The 3-prism has 6 embeddings, all non-
orientable. The octahedron has 17 embeddings, of which 4 are orientable.
Three of them are shown in Figure 10. K6 has 4 embeddings, 2 orientable
and 2 non-orientable.

Fig. 8, The 2 embeddings of K3,3
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Fig. 9, One of the 6 embeddings of the 3-Prism

Fig. 10, Three of the 17 embeddings of the Octahedron

4.5. The 7-Vertex Graphs
There are two 2-connected transitive graphs on 7 vertices with 2-cell embed-
dings, namely C7, which is the complement of the 7-cycle, and K7. C7 has
46 embeddings, of which one is shown in Figure 11. K7 has one embedding,
shown in Figure 12. The dual of K7 on the torus is the Heawood graph,
which is the incidence graph of the Fano plane, the 7-point finite projective
plane. The dual of a 6-regular graph is always a 3-regular, bipartite graph.
These dual graphs are often incidence graphs of projective configurations.

Fig. 11, One of the 46 embeddings of C7
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Fig. 12, K7 and its dual, the Heawood graph

4.6. The 8-Vertex Graphs

There are 8 2-connected transitive graphs on 8 vertices with 2-cell embed-
dings. They are: C+

8 , Q3, K4,4, C+
8 , Q3, C8, 2C4, 4K2. Here C+

8 stands
for C8 with main diagonals, and Q3 stands for the graph of the cube. The
embeddings of the cube (Figure 13) are interesting, as they show very dif-
ferent looking structures, but are all the same graph. Q3 can also be written
C4 × K2. The patterns of embeddings of the cube extend to other graphs
in the family Ck × K2.

Fig. 13, The five embeddings of the cube
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4.7. Tables of Embeddings

In this section we list a table of the numbers of embeddings of the transitive
graphs up to 12 vertices, and also for the graphs K3,4, K3,5, K3,6, and Q4.
A graph is a triangulation if every face is a triangle. Triangulations of the
torus satisfy f = 2n. They are indicated in the table by the symbol (∆). A
transitive triangulation will always be a 6-regular graph, with a 3-regular,
bipartite dual. The table lists the orders of the automorphism groups of
the embeddings, as well as the full automorphism group of the graph in
square brackets.

This table of embeddings was found as follows. For each graph (except
K3,5 and K3,6), a spanning theta-subgraph H was chosen. Any toroidal
embedding of G must contain a toroidal embedding of H. There are three
ways to embed a theta-subgraph on the torus: 2-cell, flat, or cylindrical.
There is a unique 2-cell embedding. To describe the non-2-cell embeddings
of H, notice that H has just three cycles. There are three embeddings in
which all cycles of H are flat, as one of the three cycles must be the outer
face in a flat embedding. A non-2-cell embedding which is not flat must
contain an essential cycle. As H has three cycles, there are three possible
such embeddings, which we term cylindrical.

In order to find all 2-cell embeddings of G, we choose a spanning theta-
subgraph H, and take each of its embeddings in turn. We then recursively
add each remaining edge of G to the embedding, until either a 2-cell embed-
ding is found, or until it is impossible to add an edge. For each embedding
Gt found, we construct its medial digraph M(Gt), and write these to a file.
For a graph on 12 vertices, there are typically several hundred embeddings
found, ocassionally several thousand, and occasionally less than 10. The
file of medial digraphs is then input to the graph isomorphism program of
Kocay [5], which produces a file of distinct graphs as output. The corre-
sponding embeddings are then saved, and their converses are computed in
order to distinguish orientable and non-orientable embeddings. The draw-
ing algorithm of [6] produces the diagrams.

graph n ε f emb. or. n-or. groups duals
K4 4 6 2 2 0 2 [24]41, 31

K5 5 10 5 6 2 4 [120]201, 41, 23, 11 self(1)
K3,3 6 9 3 2 0 2 [72]181, 21

3-Prism 6 9 3 5 0 3 [12]61, 22, 12

Octa=C6(2) 6 12 6 17 4 13 [48]121,61,43,31,26,15self(1)
K6 6 15 9 4 2 2 [720]62, 21, 11

K3,4 7 12 5 3 0 3 [144]41, 31, 21

C7 = C7(2) 7 14 7 24 22 2 [14]141, 214, 19 self(1)
K7 (∆) 7 21 14 1 1 0 [5040]421 Heawood
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graph n ε f emb. or. n-or. groups duals
K3,5 8 15 7 1 0 1 [720]31

Q3 (Cube) 8 12 4 5 0 5 [48]241, 82, 31, 21 Dbld(K4)
C+

8 8 12 4 4 1 3 [16]23, 11

K4,4 8 16 8 2 0 2 [1152]321, 161 self(2)
C+

8 = C8(2) 8 16 8 32 20 12 [16]161, 43, 213, 115 self(1)
Q3 8 16 8 8 4 4 [48]42, 25, 11

C8 =C8(2, 4) 8 20 12 7 7 0 [16]25, 12

2C4 =C8(3,4) 8 20 12 5 2 3 [128]81, 42, 22

4K2 (∆) 8 24 16 1 0 1 [384]161 DblCvr(Q3)
K3,6 9 18 9 1 0 1 [4320]181 Paley(9)
C9(2) 9 18 9 (71) ? ? [18]181, 61, 2, 1 self(1)
C9(3) 9 18 9 5 4 1 [18]181, 23, 11 self(1)
K3 × K3 9 18 9 7 3 4 [72]361,181,41,23,11 K3,6, self(1)
3K3 (∆) 9 27 18 1 0 1 [1296]541 Pappus
C9 (∆) 9 27 18 1 1 0 [18]181 (9,3)-config
Petersen 10 15 5 1 0 1 [120]31

C+
10 10 15 5 6 1 5 [20]101, 24, 11

C5 × K2 10 15 5 5 0 5 [20]23, 12

C10(2) 10 20 10 (98) ? ? [20]201, 4, 2, 1 self(1)
C10(4) 10 20 10 1 1 0 [20]201 self(1)
K5 × K2 10 20 10 1 1 0 [240]401 self(1)
C10(2) 10 25 15 1 0 1 [20]101

C10(4) 10 25 15 4 4 0 [20]101, 23

C5 × K2 (∆) 10 30 20 1 0 1 [20]201 (10,3)-config
C11(2) 11 22 11 (147) ? ? [22]221, 2, 1 self(1)
C11(3) 11 22 11 1 1 0 [22]221 self(1)
C11(3) (∆) 11 33 22 1 1 0 [22]221 (11,3)-config
C12(5+) 12 18 6 2 1 1 [48]121, 21

C6 × K2 12 18 6 9 0 9 [24]121, 42, 24, 12

C+
12 12 18 6 7 1 6 [24]61, 24, 12

trunc(K4) 12 18 6 9 0 9 [24]41, 31, 22, 15

C12(3+, 6) 12 24 12 1 0 1 [48]241 self(1)
C12(2) 12 24 12 (244) ? ? [24]241, 8, 6, 4, 2, 1 self(1)
C12(3) 12 24 12 1 1 0 [24]241 self(1)
C12(4) 12 24 12 2 1 1 [24]241, 41 self(1)
C12(5) 12 24 12 2 2 0 [768]242 self(2)
C12(5+, 6) 12 24 12 10 10 0 [48]62, 26, 12

L(Cube) 12 24 12 14 1 13 [48]82, 31, 23, 18 Figure 14
C4 × C3 12 24 12 2 0 2 [48]241, 21 self(1)
C4 • C3 12 24 12 1 0 1 [24]31

Icosahedron 12 30 18 12 5 7 [120]31, 24, 17
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Dual(L(Cube)), g=8, n.o.

graph n ε f emb. or. n-or. groups duals
K2 × Octa 12 30 18 1 0 1 [96]121

C12(5, 6) 12 30 18 8 5 3 [768]121,61,41,24,11

C12(2, 5+) 12 30 18 1 1 0 [12]121

C12(4, 5+) 12 30 18 1 1 0 [12]121

C12(2, 3) (∆) 12 36 24 1 1 0 [24]241 (12,3)-config
C12(2, 5) (∆) 12 36 24 1 0 1 [144]721 (12,3)-config
C12(3, 4) (∆) 12 36 24 1 1 0 [24]241 (12,3)-config
C12(4, 5) (∆) 12 36 24 1 0 1 [48]241 (12,3)-config
Q4 =C4×C4 16 32 16 1 0 1 [384]641 self(1)

In the above table, there are several graphs which require additional
comments. The graph in the duals column named Dbld(K4) is the complete
graph K4 in which each edge has been doubled. The Heawood graph is the
incidence graph of the unique (7, 3)-configuration. The incidence graph of
the (8, 3)-configuration is a double cover of the cube [7]. The Pappus graph
is the incidence graph of the Pappus configuration, which is one of three
(9, 3)-configurations. Of the remaining two (9, 3)-configurations, one can
be embedded on the torus, and the other cannot. The incidence graph
of the Desargues configuration cannot be embedded on the torus. The
Paley graph on 9 vertices is a self-complementary quadratic residue graph.
Paley(9) is isomorphic to K3×K3. It can also be described as the line graph
of K3,3. The line graph of G is denoted by L(G). The graph called C4 •C3

is similar to C4 × C3. It consists of three disjoint copies of C4, such that 4
triangles C3 are also created by taking one corner of each C4, in groups of
three. Several of the entries have a question mark (?), and a total number
of embeddings (N) in brackets (eg. (244) for C12(2)). For these, the exact
number of embeddings was not found. If there are x orientable embeddings
and y non-orientable, then the relation 2x + y = N holds. Therefore the
actual number of embeddings x + y satisfies *N

2 + ≤ x + y ≤ N .

Fig. 14, Dual(L(Cube))
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Shown above is the dual of an embedding of L(Cube). The interesting
thing about it is the regular cubic tiling of the plane that it creates.

4.8. Graphs without Embeddings

A transitive graph can have degree at most 6 in order to be embeddable
on the torus. Some graphs with degree at most 6 do not have embeddings.
They are listed here. K3,7 and K4,5 are also included.

graph n ε f group
K4,5 9 20 11 2880
K3,7 10 21 11 30240
K5 × K2 10 20 10 240
C10(3, 5) = K5,5 10 25 15 28800
Petersen 10 30 20 120
C10(2, 4) 10 30 20 20
C11(2, 5) 11 33 22 22
K3,3 × K2 12 24 12 144
C12(2, 6) 12 24 12 24
C12(3, 6) 12 30 18 24
C12(4, 6) 12 30 18 24
K3 × K4 12 30 18 144
C12(3+, 5+, 6) 12 30 18 48
L(Cube)+ 12 30 18 48
K6 × K2 12 30 18 1440
C12(3, 5) = K6,6 12 36 24 1036800
Octa × K2 12 36 24 96
Icosahedron 12 36 24 120
L(Cube)+ 12 36 24 48
C12(2, 4) 12 36 24 24
C12(2, 5+, 6) 12 36 24 12
C12(3+, 4, 6) 12 36 24 768
C12(4, 5+, 6) 12 36 24 12
K6 × K2 12 36 24 1440

The graph denoted L(Cube)+ is based on the line graph of the cube,
L(Q3), by adding several edges. L(Q3) has the property that every vertex
has a unique opposite vertex at distance three. By adding the edges joining
each vertex to its diametrically opposite vertex, we obtain L(Cube)+.

4.9. Questions

1. It appears from the table that the graphs with the greatest number of
embeddings are of the form Cn(2). Can this be proved?

2. How can isomorphic, non-isotopic embeddings be detected algorithmi-
cally?
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3. A symmetric toroidal embedding creates a tiling of the plane. For
example, the rectangular embeddings, honeycomb embeddings, and
triangular embeddings are all symmetric tilings of the plane. Different
sections of these tilings create different graphs. K3,3, the Cube, the
Heawood graph, the Pappus graph, etc, are all sections of the honey-
comb tiling. K5, C7, Q4, and most of the self-dual 4-regular graphs are
all sections of the rectangular tiling. K7 and many others are sections
of the triangular tiling. Can these graph families be classified?

4. Whitney’s theorem [12] states that a 3-connected graph has a unique
planar embedding. What is the corresponding theorem for the torus?
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