
March, 1998

This paper appeared in

J. Comb. Maths and Comb. Computing 31 (1999) 193-206.

A Modification of the Schreier-Sims Algorithm
Utilising the Transitivity of the Stabiliser Subgroups

William Kocay*
Computer Science Department

University of Manitoba
Winnipeg, Manitoba, CANADA, R3T 2N2

e-mail: bkocay@cs.umanitoba.ca

Abstract

A modification of the Schreier-Sims algorithm is described which builds
a permutation group utilising the transitivity of the stabiliser subgroups.
Alternating and symmetric groups are recognized by their transitivity, re-
sulting in a greatly improved time to build symmetric and alternating
groups. The algorithm has applications to graph isomorphism and other
combinatorial isomorphismalgorithms andto permutation groupalgorithms.

1. Introduction

When constructing a permutation group G using the Schreier-Sims algo-
rithm [2,3], it would often be convenient to know the transitivity of G.
Once a group has been built as a tower of stabiliser groups, it is fairly
straightforward to run through its tower of subgroups and calculate the
transitivity by computing all the orbits of the stabilisers. However, there is
an advantage to knowing the transitivity at all times as the group is being
built. The alternating and symmetric groups are the most time-consuming
to build. Yet they are easily recognized by their transitivity. If we knew the
transitivity, we could bypass much of the computation normally required
to build the group. In this article we show one way to accomplish this.

The data structures and algorithms we use to implement the Schreier-
Sims algorithm is that of [4]. A group is stored as a tower of stabilisers.
Each group in the tower is represented by a record containing: generators
for the stabiliser; the point u whose stabiliser is next in the tower; the orbit
of u; an array of coset representatives, one for each point in the orbit.

* This work was supported by an operating grant from the Natural Sciences and Engi-

neering Research Council of Canada.

1



GroupPtr = ∧Group
Group = record

Generators: linked list of generators
u: integer, the point whose stabiliser is next in the tower
OrbitQueue: integer array, the orbit of u
nPts: integer, the number of points in orbit of u
CosetRep: array of pointers to coset reps of Gu

InverseRep: array of pointers to inverses of coset reps
Gu: GroupPtr, pointer to the stabiliser of u

end

We assume a procedure GroupElement(g,G), which accepts a permu-
tation g and a group G, and returns true if g ∈ G and false if g 6∈ G.
When a group is being built, generators g of the stabiliser subgroup Gu are
discovered. There will be a statement that checks if g is a known element
of Gu:

if not GroupElement(g,Gu) then AddGen(g, Gu)

AddGen(g,Gu) is a recursive procedure that updates the data struc-
tures of Gu to reflect the new generator g. This usually means that one
or more stabiliser subgroups in the tower will also be updated recursively.
We would like to store an integer Transitivity in the record of each group.
After the procedure AddGen(g, Gu) returns, the transitivity of Gu would
be known. We would then check if Gu is now known to be a symmetric or
alternating group, by testing its value Transitivity . If it is, then a quick cal-
culation will determine if G is also a symmetric or alternating group. If it is,
this will obviate the need to continue the orbit-building loop in which gen-
erators of G are multiplied and possible generators for Gu are constructed.
The result will be a much faster algorithm for building symmetric and al-
ternating groups, plus the advantage of knowing the transitivity of every
group in the tower. Every time we build a group, we automatically obtain
its transitivity, without having to do a separate calculation for it.

2. Algorithm

We assume that a permutation group G acting on a set {1, 2, . . . , n} of
n points is being constructed from a list of generating permutations. Each
permutation is stored as an integer array of length n. G is to be stored as a
tower of stabiliser subgroups. Each stabiliser in the tower also acts on the
n points. We will say that a group is transitive if all the points it moves fall
into one orbit. The remaining orbits consist of fixed points. For each group
G we choose a point u moved by G, and construct the stabiliser subgroup
Gu.

2



We define the transitivity of G recursively. The identity group has
transitivity 0. The transitivity of G is defined to be k, where k ≥ 1, if G is
transitive, and its stabiliser Gu has transitivity k − 1 and moves the same
points as G (except for u.).

We modify the storage of group G to include its transitivity. The
ith point in the orbit of u is ui =OrbitQueue [i]. CosetRep is an array of
pointers to permutations. CosetRep[ui] points to a permutation mapping
u to ui. It is the representative stored for the coset of Gu mapping u to
ui. InverseRep[ui] is the inverse permutation. If the inverse is needed, it is
stored here. Otherwise its value is nil.

GroupPtr = ∧Group
Group = record

Generators: linked list of generators
u: integer, the point whose stabiliser is next in the tower
OrbitQueue: integer array, the orbit of u
nPts: integer, the number of points in orbit of u
Transitivity: integer
CosetRep: array of pointers to coset reps of Gu

InverseRep: array of pointers to inverses of coset reps
Gu: GroupPtr, pointer to the stabiliser of u

end

Group G is built by a procedure AddGen(g, G), which applies the new
generator g to each point in the orbit of u. Either the orbit of u is extended
by g, or else one or more new generators of Gu are discovered. The second
possibility causes a recursive call to AddGen. At first I attempted a scheme
based on using the stored transitivity of Gu and only the points moved
by the new generator g. This does not work. It results in unavoidable
cases where all the generators must be applied to build the orbits, possibly
at every level in the recursion. This extra computation would defeat the
purpose of using the stored transitivity to improve the computation speed.

It seems like the only way it can be done is to store all the orbits at
every level in the recursion, and maintain a count of them. When a new
generator g is added to G, orbits will merge. We need to be able to detect
which orbit a point is in, and to merge distinct orbits. Therefore we use
the merge-find data structure (also called set-union) to represent the orbits.
See [1,4,6]. Note that we do not need to maintain a list of the points in each
orbit . We then need apply only the new generator to the existing orbits to
update them.

At each level in the recursion, we divide the orbits into three sets – the
orbit containing u, which is stored as an array OrbitQueue, the fixed points
or singleton orbits, and the remaining orbits. We call these remaining orbits

3



“outside” orbits.
In order to keep a count of the number of outside orbits, the value of

Transitivity stored for a group G is

= 0, if G is the identity group
= transitivity of G, if G is transitve
= −(the number of outside orbits), if G is intransitive

In this way, we know that G is transitive if Transitivity> 0, and we
know the number of outside orbits if Transitivity< 0.

In order to store all the outside orbits using an MF-type data structure
without adding another array to the group record, we can use the value of
CosetRep[v] for points v not in the orbit of u. Normally the value of
CosetRep[v] would be nil if v is not in the orbit of u. Instead of nil we
will now store a value CosetRep[v] = w, where w is the next point closer
to the representative of the orbit of v, if v is in an outside orbit. v is the
representative of its orbit if CosetRep[v] = v. See [4,6] for a description of
the merge-find data structure. We use CosetRep[v] = 0 to indicate that v
is a singleton orbit. In order to distinguish a value CosetRep[v] = w from
an actual pointer to a permutation, we rely on addresses (pointers) inside
a computer being integers not in the range 1 to n. Since this points to a
low-memory address, this would not be considered a valid pointer in most
computers. If this is not the case for a computer on which this algorithm is
implemented, it will be necessary either to use an additional array, or else
to modify this method in some other way.

Suppose now that a new permutation g is to be added to group G.
The main operation of the Schreier-Sims algorithm is to apply g to every
point in the orbit of u. Either the orbit of u is extended, or else a stabiliser
subgroup is extended. Then for all new points v added to the orbit of u,
every generator of G is applied to v. Again the orbit may be extended, or
a stabiliser subgroup may be extended.

AddGen(g,G)
1. for each ui ∈ OrbitQueue, find v := g[ui]
2. if v 6∈OrbitQueue, add v to OrbitQueue, construct CosetRep[v]
3. else v ∈OrbitQueue, construct a generator g′ for the stabiliser Gu

if not GroupElement(g′, Gu) then AddGen(g′, Gu)
4. for all new points v ∈ OrbitQueue, apply all generators of G to v

as in items 1 to 3.

After AddGen(g,G) has been executed, the group G is up to date with
respect to the new generator g. We now want to modify this algorithm to
simultaneously compute the transitivity of G, and to detect symmetric and
alternating groups. As before we still must apply the new generator g

4



to every point ui in the orbit of u, and we must apply all generators of
G to every new point v added to the orbit. As these computations are
proceeding, we must also:

1. keep track of the number of outside orbits
2. after the recursive call to AddGen(g′,Gu), we must check if the sta-

biliser Gu is now known to be alternating or symmetric. If it is, G
might also be alternating or symmetric. We check for this, and break
out of the orbit building loop if it is indeed the case.

The modified algorithm now looks like this.

AddGen(g,G)
1. for each ui ∈ OrbitQueue, find v := g[ui]
2. if CosetRep[v] ≥ 0 and CosetRep[v] ≤ n then v 6∈OrbitQueue

a. v is either previously a singleton orbit, or in an outside orbit
b. if CosetRep[v] 6= 0, v is in an outside orbit which now becomes

merged with Orbit
• increment Transitivity since there is one fewer outside orbit
• we must ensure that when the other pts of this outside orbit

are added to OrbitQueue, that we do not again adjust Transi-
tivity

c. add v to OrbitQueue and construct CosetRep[v]
3. otherwise, v ∈ OrbitQueue, construct a generator g′ for the sta-
biliser Gu

a. if g′ is not currently in Gu, then AddGen(g′, Gu)
b. if Gu has Transitivity≥ min(2, nPts−2) then Gu is (k − 2)-trans-

itive or more on k points ⇒ Gu is either symmetric or alternating.
• check the OrbitQueue of G. If G acts on k + 1 points, then

G is also symmetric or alternating. Decide which and go to 5.
4. for all new points v ∈ OrbitQueue, apply all generators of G to v

as in items 1 to 3.
5. CheckTransitivity(g, G)

There are a number of subtle aspects to this algorithm.

Statement 2.b. of AddGen
We have a point v with CosetRep[v] 6= 0. v is in an outside orbit which

now becomes merged with OrbitQueue. We increment the Transitivity ,
since there is now one fewer outside orbit. The other points in the orbit of v
will also be encountered during the course of the algorithm. We don’t want
to increment Transitivity again for other points in this orbit. Therefore
after merging the orbits we find the reperesentative w of the orbit of v
and set CosetRep[w] := 0. The algorithm will henceforth think that w is
a singleton orbit. Since all points in an orbit can be identified via their

5



representative w, it will not increment Transitivity again for this orbit.
Somewhere during the course of the orbit-building loop, an actual coset
representative will be constructed for w, and for the other new points in
the orbit, so that CosetRep[w] will be reassigned. So the value of 0 stored
is just a temporary value that will correct itself. The procedure that finds
the orbit representative must be aware of this usage, and return 0 if Co-
setRep[w] is found to exist. The code that updates the transitivity looks
like this.

if CosetRep[v] ≥ 0 and CosetRep[v] ≤ n then begin

{ v is either previously a singleton orbit, or in an outside orbit }
if CosetRep[v] 6= 0 begin

w := FindOrbitRep(v)

if w 6= 0 then begin

increment Transitivity

CosetRep[w] := 0 { the orbit rep of v will now be seen as 0 }
end

end

end

Statement 3.b. of AddGen

The algorithm has returned from a recursive call to AddGen(g′, Gu).
The stabiliser group Gu is up to date, and so we know if it is alternating or
symmetric. This will be the case if it is (k − 2)-transitive or more, where
its OrbitQueue contains k points. We require k − 2 ≥ 2 so that it makes
sense to speak of Gu being alternating or symmetric.

We have to be careful with the small values of k, since it is the small
values that start the induction and make the recursion work properly. No-
tice that Gu will have been originally initiallized to an identity group. If its
first generator happens to be a transposition, it will be seen as 2-transitive
on 2 points, a symmetric group. If its first generator happens to be a 3-
cycle, it will be seen as 1-transitive on 3 points, an alternating group. This
is how we want the algorithm to work.

Assume that after AddGen(g′,Gu) returns, the group Gu is (k − 2)-
transitive or more on k points. We need to determine whether G is alter-
nating or symmetric or neither. The OrbitQueue of G contains nPts points
so far, but at this point we don’t know the full orbit of u in the group G.
Remember, the algorithm is in the middle of the orbit building loop. If
nPts > k + 1, then the orbit of u is too big, and G cannot be symmetric
or alternating. Therefore we first check that nPts ≤ k + 1. If this is so, G
may be alternating or symmetric, but we can’t decide unless we know the
entire orbit of u. We must find it at this point. The code looks like this.

6



if Gu has Transitivity ≥ min(2, nPts−2) then begin
{ Gu is (k − 2)-transitive or more on k points }
if G has nPts ≤ k + 1 then begin

{ G may be alternating or symmetric, we need the full orbit }
if SymmetricOrAlternating(G, k) then begin

{ G is either symmetric or alternating, decide which }
if Transitivity+2 = nPts then CheckSymmetric(G)
go to statement 5

end
end

end

There are two additional procedure calls here, SymmetricOrAlternat-
ing(G, k) and CheckSymmetric(G). The first one builds the rest of the orbit
of u in G, and compares its size against the orbit size k from Gu. If the
orbit contains exactly k+1 points, that is, exactly one more point than Gu,
then since Gu is known to be either alternating or symmetric, and k ≥ 2,
we know that G is also alternating or symmetric. In this case it returns a
true value. Notice that SymmetricOrAlternating(G, k) does not construct
coset representatives for the points it adds to the orbit. It merely picks up
where AddGen left off, and builds the orbit. This is very quick. (Notice
that it needs to know at what point in AddGen it was called from, so that
it can pick up at that point. There is a difference depending on whether it
is called from statement 3a or 4. The program must be aware of this.) If
it decides that G is in fact alternating or symmetric, it then goes back and
constructs coset representatives. It does not construct generators for the
stabiliser Gu, since Gu is already known to be alternating or symmetric.
If it decides that G is not alternating or symmetric, then it must allow
the orbit-building loop of AddGen to continue, since AddGen may discover
further generators for Gu. In this case it resets the values that had been
changed. This happens only rarely.

SymmetricOrAlternating (G, k)
1. AddGen was last adding g[ui] to OrbitQueue

Gu is at least (k − 2)-transitive on k points
beginning with j := i + 1 for each uj ∈ OrbitQueue , find v := g[uj ]

2. if CosetRep[v] ≥ 0 and CosetRep[v] ≤ n then v 6∈ OrbitQueue
a. if OrbitQueue already contains k + 1 points, then go to 5
b. v is either previously a singleton orbit, or in an outside orbit
c. if CosetRep[v] 6= 0, v is in an outside orbit which now becomes

merged with OrbitQueue
• increment Transitivity since there is one fewer outside orbit
• we must ensure that when the other pts of this outside orbit

7



are added to OrbitQueue, that we do not again adjust Transi-
tivity

c. add v to OrbitQueue, do not construct CosetRep[v], but save
the value uj so that we can find it again easily later. (Use In-
verseRep[v] = uj)

3. for all new points v ∈ OrbitQueue, apply all generators of G to v
as in items 1 and 2.

4. the full orbit is now known. We must still check that the orbit of
Gu is contained in the orbit of G.
a. if it is not, then go to 5
b. otherwise G is either symmetric or alternating
c. for all points v added to the orbit, construct CosetRep[v], using

the generator g and the point uj that was saved in item 2c.
d. return true

5. G is not symmetric or alternating
a. reset CosetRep[v] to 0, for all new points added to OrbitQueue
b. return false

Notice that SymmetricOrAlternating changes the value of Transitiv-
ity , which counts the number of outside orbits, but does not reset it if it
must return a false answer. Once it has merged any outside orbits, it is not
necessary to undo this, only to have AddGen redo it. Also, SymmetricO-
rAlternating is only called if Gu is found to be symmetric or alternating.
If so, there is a very good chance that G will also be found symmetric or
alternating, so that it will likely only be called at most once for each group
in the tower.

SymmetricOrAlternating also must check if the orbit of Gu is contained
in the orbit of G. This is done by testing if the point u saved in the group
Gu is in the orbit moved by G. It requires testing one point only, the orbit
representative.

The other procedure called by AddGen is CheckSymmetric(G). It is
called after SymmetricOrAlternating (G, k) returns true. If Gu was discov-
ered to be symmetric, we know that G is also symmetric. Similarly, if Gu

was discovered to be alternating, we expect that G is also alternating. How-
ever this is not always the case. I discovered the following set of generators
for the symmetric group S6.

a = (1, 2,3, 4, 5,6)
b = (1, 3,5)
c = (1, 4)

If we build a group G by adding first generator a, then b, we get
a group of order 6, and then 18. We now call AddGen(c, G). AddGen

8



discovers a new generator for the stabiliser Gu. After a recursive call to
AddGen to extend Gu, it is discovered that Gu is the alternating group A5.
SymmetricOrAlternating is then called, and returns true, so that G is either
symmetric or alternating. If we then assume that G must be alternating, we
would be in error. Once it is discovered that G is symmetric or alternating,
the orbit building loop of AddGen is stopped. In this case, it reaches a point
where Gu is A5. All generators found so far at all levels in the recursion have
been even. If it had continued to construct generators for the stabiliser,
it would eventually have found an odd one, and extended the stabiliser
to S5. But the whole purpose of SymmetricOrAlternating is to avoid all
this work precisely for symmetric and alternating groups. Therefore, when
SymmetricOrAlternating reports alternating, we must check that it really
is alternating. One way to do this is by checking whether G has an odd
generator. It means extra work for alternating groups, at every level of
recursion, since they have no odd generators. However, for groups which
are not alternating or symmetric, we never have to check the sign of any
generator. For symmetric groups, we stop as soon as we come to the first
odd generator.

CheckSymmetric(G)
1. G is either symmetric or alternating, check for an odd generator:

for each generator g, check if g is odd. If so, go to 3
2. at this point, all generators are even, return
3. an odd generator was encountered – group G is symmetric. All
stabilizers in the tower are currently marked as alternating. We must
change all stabilisers to symmetric. The group currently at the bottom
of the tower is a 3-cycle, say (x, y, z). When point x, say, is fixed, so
are y and z. In order to extend this to a symmetric group, we must
add the transposition (y, z) as a generator at every level in the tower,
and construct a new CosetRep for y and z in the group at the bottom
of the tower. A new stabiliser is created at the bottom of the tower,
generated by the transposition (y, z).

Statement 5 of AddGen.

Statement 5 contains a call to CheckTransitivity(g, G), which takes
place after G has been made up to date with respect to the new generator
g. The value stored in G for Transitivity is either the degree of transitivity
of G, if G is a transitive group, or else −(number of outside orbits), if G
is non-transitive. This number must be adjusted if G is not symmetric or
alternating. The orbit building loop of AddGen has applied g to every ui ∈
OrbitQueue. We must also apply g to the points not in OrbitQueue . Some
outside orbits may merge, and others may be created if points previously
in singleton orbits are moved by g.

9



CheckTransitivity(g, G)
1. deltaOrbs := 0 { the change in the number of outside orbits }
2. for each u ∈ {1, 2, . . . , n} such that g[u] 6= u, find v = g[u]
3. if CosetRep[u] ≥ 0 and CosetRep[u] ≤ n then u 6∈ OrbitQueue

a. u is either previously a singleton orbit, or in an outside orbit
b. if CosetRep[u] = 0, u was previously a singleton orbit

• if CosetRep[v] = 0, v is also a singleton orbit → increment
deltaOrbs, and assign CosetRep[u] and CosetRep[v]
• if CosetRep[v] 6= 0, the number of orbits doesn’t change

c. otherwise CosetRep[u] 6= 0, u is in an outside orbit. If also Co-
setRep[v] 6= 0, then the orbits of u and v may merge.
• u′ := FindOrbitRep(u), v′ := FindOrbitRep(v)
• if u′ 6= v′ then merge the orbits, and decrement deltaOrbs

4. the outside orbits are now up to date with repsect to g
we must still adjust the Transitivity

a. if Transitivity= 0, G was previously an identity group
• if deltaOrbs > 0 then Transitivity = −deltaOrbs

b. else if Transitivity> 0, G was previously a transitive group, it may
now be intransitive
• if deltaOrbs > 0 then Transitivity = −deltaOrbs

c. otherwise Transitivity< 0, G was previously an intransitive group,
adjust the number of outside orbits
• Transitivity = Transitivity − deltaOrbs

5. if Transitivity≥ 0, G is now a transitive group
we must set the Transitivity

a. let k be the transitivity of Gu and let m be the number of points
moved by Gu

b. if k > 0 and G moves m + 1 points, then Transitivity := k + 1
c. otherwise G cannot be multiply transitive.

• if G moves only 2 points, then Transitivity := 2
• otherwise Transitivity := 1

3. Correctness

The transitivity algorithm is a modified form of the Schreier-Sims algo-
rithm. A group G is stored as a tower of stabiliser subgroups. The outside
orbits of an intransitive group in the tower are stored in a merge-find data
structure [4,6]. For space-efficiency, the CosetRep array is used to store
the MF data structure, although it could be implemented using a sepa-
rate array. A count of the number of outside orbits is maintained in the
variable Transitivity. So long as Transitivity< 0, we know that a group is
intransitive. If Transitivity≥ 0, the correctness of the algorithm is based

10



on recursion (induction). The value of Transitivity is set near the end of
the procedure CheckTransitivity.

Consider the first time when Transitivity≥ 0 is detected. There are
no outside orbits. When a stabiliser group in the tower is created and
initiallized, its value of Transitivity is set to 0. The first time that Check-
Transitivity encounters a value of Transitivity≥ 0 is at the bottom of the
tower of stabilisers. This is because CheckTransitivity is called after the
orbit building loop of AddGen completes, and AddGen is a recursive pro-
cedure. So assume that a generator g has been added to a group G in
the tower and that CheckTransitivity is called, and finds a value of Tran-
sitivity≥ 0, indicating no outside orbits. The stabiliser Gu is either an
intransitive group, or the identity group. Since G has no outside orbits, all
the points moved by g are in one orbit. If G moves only two points, g is
a transposition, in which case G is the symmetric group S2. In this case,
CheckTransitivity sets Transitivity= 2. Otherwise G moves three or more
points. Its stabiliser Gu is either intransitive or the identity. In both cases,
G is only 1-transitive. CheckTransitivity sets Transitivity= 1. These are
the correct values when CheckTransitivity detects Transitivity≥ 0 for the
first time.

We now proceed by induction on the number of stabiliser groups be-
neath G in the tower for which CheckTransitivity detects Transitivity≥ 0.
We assume that when AddGen returns, the value stored in Transitivity is
the correct value, when there are at most i groups in the tower beneath
G for which this occurs, where i ≥ 0. We know that it holds when i = 0.
Consider now a situation for which CheckTransitivity detects Transitiv-
ity≥ 0. The transitivity of Gu is known to be k ≥ 0, by the induction
hypothesis. If k > 0 and G moves exactly one more point than Gu, then G
is (k + 1)-transitive. This is the value of Transitivity set by CheckTransi-
tivity. Otherwise either k = 0 or G moves too may points. In both cases
CheckTransitivity sets Transitivity to one. These are the correct values.

We can conclude that CheckTransitivity always sets Transitivity cor-
rectly. It follows that when Gu is found to be (k − 2)-transitive or more
on k points, where k ≥ 2, that Gu is either alternating or symmetric. At
this point, if G has no outside orbits, AddGen calls SymmetricOrAlternat-
ing(G, k), which checks if G moves exactly one more point than Gu. If this
is the case, G is also either symmetric or alternating. The algorithm fills
in the table of coset representatives, and distinguishes between alternating
and symmetric groups. The orbit building loop of G is stopped at this
point, since G is completely known. Hence:

3.1 Theorem. The algorithm is correct. It detects symmetric and alter-
ating groups, and calculates the transitivity of all groups in the tower.

11



4. Data Structures and Performance

The data structures for storing a group are taken from [4], as is the
implementation of the Schreier-Sims algorithm. A permutation is stored
as an array. An array of coset representatives is stored as pointers to
permutations. A group contains: a linked list of generators (permutations);
an orbit stored as an array; and an array of pointers to coset representatives.
It also contains a pointer to the stabiliser, which is stored in the same
fashion.

In order to save storage we use the CosetRep array to store the outside
orbits in a merge-find data structure. This works well, but it does require
some subtlety in programming.

If the transitivity check is not used in the Schreier-Sims algorithm, we
find that symmetric and alternating groups are much, much slower to gen-
erate than other groups. This is because of their high degree of transitivity.
An n-transitive group acting on n points will require a table of

(
n
2

)
coset

representatives in total. Since these coset representatives are constructed
by multiplying permutations, it takes at least O(n3) steps to build the table
for symmetric and alternating groups. When the table is being constructed
in the orbit building loop of AddGen, each generator is applied to every
point in the orbit, and generators g for the stabiliser are constructed by
multiplying three permutations. It can take up to O(n2) steps to deter-
mine whether g is already known to be in the stabiliser. So conceivably,
it could take O(n4) steps for each generator to build the tables of coset
representatives for the symmetric and alternating groups. If the number of
generators is bounded by a constant this gives up to O(n4) steps. If the
number of generators is not bounded by a constant, the complexity could
become slightly worse.

When the transitivity check is used, most of the redundant generators
can be avoided. As soon as Gu is found to be symmetric or alternating, the
table is filled in, taking at most O(n3) steps. In fact, this step could also
be avoided. Once we have discovered that a group G is either symmetric or
alternating, we know its coset representatives without constructing them.
So it would be enough to save a constant indicating that G is symmetric
or alternating, and avoid building the table of cset representatives. The
reason I have not done this is because having constructed G, it will likely
be used for further computation, eg, finding Cayley graphs, finding sub-
groups and their cosets, etc. These other algorithms would require special
programming to deal with symmetric and alternating groups if the table of
coset representatives is not complete. It is easier just to build the tables of
coset representatives.

It is difficult to estimate the actual complexity of the transitivity-

12



checking algorithm. When SymmetricOrAlternating is called on a group
with k generators acting on n points, it can apply at most every generator to
every point, a total of kn steps, which is O(n) if k is bounded by a constant.
It is very fast. It usually returns true, in which case the rest of the orbit
building loop of AddGen is avoided. This can happen at most once at each
level in the recursion, for each generator of G. In practice, the generation
of symmetric and alternating groups is almost instantaneous. Previously
symmetric and alternating groups were much, much slower to build, perhaps
10 times slower when n = 24, using the same algorithm but without the
transitivity check. When G is an alternating group, the algorithm must
check that each generator is even, at each level in the recursion. Since it
takes n steps to check if a permutation is even, this requires an additional
O(n2) steps, again assuming that the number of generators on each level is
bounded by a constant. This is still very fast. It is difficult to accurately
estimate the number of generators that will be produced for the stabilisers
in the Schreier-Sims algorithm. In practice, the number seems to be very
small.

Groups which are not symmetric or alternating take only slightly longer
to build than previously. The only difference is that some time is required in
order to keep track of the outside orbits. This is approximately O(n) steps
per generator, at each level in the recursion. The depth of the recursion
will be much less than n for groups which are not alternating or symmetric.
If the number of generators at each level is bounded by a constant, this will
mean an additional O(n2) steps in total keeping track of outside orbits.

A multi-transitive, non-symmetric, non-alternating group can be at
most 5-transitive, so that its depth of the tower of stabilisers is at most
five. At each level, each generator is applied to all points in the orbit,
that is, to at most n points. Multi-transitive groups will be generated in
approximately O(n3) time.

The most difficult groups to build will be those that are a direct prod-
uct of symmetric groups, say Sn/2 × Sn/2. The algorithm will correctly
detect one of the symmetric groups, since it will appear in the tower of
stabilisers, and build it in time O(n3). However the other will not be so
easily detected, and may take O(n4) time, assuming that the number of
generators on each level is bounded by a constant.

The algorithm works by detecting symmetric and alternating groups
via their transitivity, and avoids the orbit building loop of the Schreier-
Sims algorithm in these cases. It cannot detect representations of Sn and
An on more than n points. For example, the group of the line graph of
the complete graph Kn is isomorphic to Sn, but acts on

(
n
2

)
points. The

algorithm is unable to make use of the transitivity in this case, since this
group is only 1-transitive. Similarly it cannot detect products of symmetric

13



and alternating groups, like wreath products and other subdirect products.
For direct products of symmetric and alternating groups, the transitivity
check is partly ineffective, since it only works when groups are transitive.

In conclusion, the complexity of the transitivity-checking Schreier-Sims
algorithm is O(n4) in general, assuming that the number of generators at
each level is bounded by a constant. For symmetric and alternating groups
it is O(n3), with the same assumption.

Question. Can the algorithm be modified to detect direct and subdirect
products involving symmetric and alternating groups?

I have used this algorithm in the graph isomorphism computation [5] of
my Groups & Graphs 2.5 software. The result has been a great increase
in speed generating automorphism groups of complete graphs.

References

1. A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Com-
puter Algorithms , Addison Wesley, Toronto, 1974.

2. Christoff Hoffmann, Group Theoretic Algorithms and Graph Isomor-
phism , Lecture Notes in Computer Science #136, Springer-Verlag, New
York, 1982.

3. D. Knuth, “Notes on efficient representation of perm groups”, unpub-
lished manuscript.

4. William Kocay, “On Writing Isomorphism Programs”, book chapter in
Computational and Constructive Design Theory , Editor: W.D. Wallis,
pp. 135-175, Kluwer Academic Publishers, 1996.

5. William Kocay, “Groups & Graphs, a Macintosh application for graph
theory”, Journal of Combinatorial Mathematics and Combinatorial
Computing 3 (1988), 195-206.

6. Mark Allen Weiss, Data Structures and Algorithm Analysis, Benjamin
Cummings Publ. Co., Redwood City, California, 1992.

14


