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Abstract
Read’s algorithm for constructing a planar layout of a graph G pro-

duces a straight-line embedding of G, by using a sequence of triangulations.
Let F denote any face of G. In this paper, Read’s algorithm is modified.
A straight-line embedding is constructed in which F forms the outer face,
such that its vertices lie on a convex regular polygon. It is proved that the
method always works. Usually F is taken as the face of largest degree. The
complexity of the algorithm is linear in the number of vertices of G.

1. Read’s Algorithm

Let G be a planar, 2-connected, undirected, simple graph on n ≥ 4 vertices.
The vertex and edge sets of G are V (G) and E(G). If u, v ∈ V (G), then u →
v means that u is adjacent to v (and so also v → u). The reader is referred
to Bondy and Murty [1] for other graph-theoretic terminology. We begin
with a brief description of Read’s algorithm for finding a planar layout of a
graph. See Read [5] for more detailed information. G is known to be planar,
and we assume that initially we are given the clockwise cyclic ordering of the
edges at each vertex in a planar embedding. This is sufficient to define the
faces of the embedding. The algorithm of [4] will construct such a clockwise
ordering of the edges at each vertex. If G is not a triangulation, then we can
complete it to a triangulation on n vertices by adding appropriate diagonal
edges in some of the faces of G. This gives a triangulation which we shall
call Gn. Read’s algorithm then proceeds to reduce Gn to a triangulation
Gn−1 on n − 1 vertices by deleting some vertex. The reduction works as
follows. Let u be a vertex of G. If deg(u) = 3, then Gn−1 = Gn − u is a
triangulation on n − 1 vertices. See Fig. 1. If deg(u) = 4, let v, w, x, y be
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the vertices adjacent to u, in that order. Then (v, w, x, y) is a quadrilateral
face in Gn − u. If v 6→ x then Gn−1 = Gn − u + vx is a triangulation on
n − 1 vertices. But if v → x then w 6→ y, and Gn−1 = Gn − u + wy is a
triangulation on n − 1 vertices. See Fig. 2.

Fig. 1, deg(u) = 3

Fig. 2, deg(u) = 4

Finally, if deg(u) = 5, let v, w, x, y, z be the vertices adjacent to u,
which form a pentagonal face in Gn − u. We can triangulate this face by
adding the two diagonals vx and vy, unless one of these is already an edge
of Gn. See Fig. 3. If one of these, say vx is an existing edge, then wy and
wz are two diagonals that are not edges of Gn. Similarly if vy is an existing
edge of Gn. It follows that the pentagonal face can always be triangulated,
giving a triangulation Gn−1.

Fig. 3, deg(u) = 5

The following simple observation is important to the success of the
algorithm.

1.1. Let a vertex u be deleted from a triangulation Gn, as above, to produce
a triangulation Gn−1 by adding up to two diagonals in the non-triangular
face of Gn − u. If deg(u) = 3, then all vertices adjacent to u decrease their
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degree by one. If deg(u) = 4, then two vertices adjacent to u decrease their
degree by one, the other two remain unchanged. If deg(u) = 5, then two
vertices adjacent to u decrease their degree by one, two remain unchanged,
and one increases by one.

Let Gn have n vertices, ε edges, and f faces. Since Gn is a triangula-
tion, we have 3f = 2ε. Then from Euler’s formula,

n − ε + f = 2,

it follows that 3n − ε = 6. Let n3, n4, n5, . . . denote the number of
vertices of Gn of degree 3, 4, 5, etc. Since n ≥ 4 and G is simple, there
are no vertices of degree 2 or less. Then n = n3 + n4 + n5 + . . . and
2ε = 3n3 +4n4 +5n5 + . . .. Substituting these into the formula above gives
3n3 + 2n4 + n5 = 12 + n7 + 2n8 + 3n9 + . . .. We will refer to this often.
Therefore we note it as follows.

1.2. Let G be a simple triangulation on n ≥ 4 vertices with ε edges. Let
nk denote the number of vertices of degree k. Then 6n − 2ε = 12 and
3n3 + 2n4 + n5 = 12 + n7 + 2n8 + 3n9 + . . ..

It follows that Gn always contains a vertex of degree 3, 4, or 5. There-
fore the reduction from Gn to Gn−1 can always be accomplished. Read’s
algorithm then continues this reduction until G3 is reached. Since G3 is a
triangle, its vertices can be placed anywhere in the plane, so some placement
is chosen. The reduction process is then reversed, and the deleted nodes
are reinserted in the reverse order to which they were deleted. Each node is
placed inside a triangle, quadrilateral, or pentagon. Read shows how to do
this [5] in such a way that a straight-line embedding of Gn is constructed.
The edges added to G in order to triangulate it are then deleted, leaving
an embedding of the original graph G.

We have programmed this algorithm, and found that it produces em-
beddings which tend to squash the majority of nodes together into a small
corner of the graph. The outer face of Gn is always a triangle. When the
triangulating edges of Gn are removed in order to get G, this gives the
outer face of G an unusual shape. Two typical examples follow in Figs. 4
and 5. Fig. 4 shows the graph of the cube. Fig. 5 is a planar embedding
of Tutte’s graph. (Tutte’s graph was the first known counterexample to
Tait’s conjecture, that is, it is a planar, 3-connected, trivalent graph that
is non-hamiltonian. See Bondy and Murty [1] for further information.)
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Fig. 4, The graph of the cube

Fig. 5, Tutte’s graph

The purpose of this work is to show how to modify Read’s algorithm
so as to produce planar embeddings in which the outer face is a regular
polygon, and in which the nodes do not tend to accumulate into a small
area of the embedding.

2. Weighted Averages.

As above, we have Gn is a triangulation of G. By deleting one vertex of Gn

at a time, we produce a sequence Gn, Gn−1, Gn−2, . . . , G3 of triangulations.
From each Gk, (n ≥ k ≥ 4), a vertex uk is deleted, and up to two diagonal
edges are inserted in the non-triangular face of Gk − uk. This produces
Gk−1. The accumulation of nodes of G into a small area of the graph
occurs because each deleted node uk is placed in the centre of a triangle
or quadrilateral when it is restored. (Pentagons are more complicated.)
The remaining vertices uk+1, . . . , un are thereby often forced into a small
number of the faces of Gk. A more equitable positioning of the vertices can
be accomplished by taking a suitable weighted average of the coordinates
of the vertices of the face in which uk is placed.
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Notice that the assignment of positions to the vertices of Gn produces
simultaneous embeddings of all Gk. To each face F of Gk there is a unique
clockwise traversal of the boundary of F . This is called the facial cycle of
F . For each edge vw ∈ E(Gk), there is a unique face Fvw whose facial cycle
contains v followed by w. There is a natural coorespondence relating each
face of Gn to a unique face of Gk, as we now show. For each vw ∈ E(Gk),
let fk(vw) denote the number of faces of Gn which correspond to Fvw of Gk.
It is easy to compute the numbers fk(vw) when performing the reduction
Gn, Gn−1, Gn−2, etc. This can be done as follows. Initially fn(vw) = 1,
for all vw ∈ E(Gn). Let u be the vertex deleted, and refer to Figs. 1, 2,
and 3.

If deg(u) = 3, the three faces uvw, uwx, and uxv of Gk are all
contained within vwx in Gk−1. Therefore the faces of Gn correspond-
ing to uvw, uwx, and uxv in Gk all correspond to vwx in Gk−1. So
fk−1(vw) = fk−1(wx) = fk−1(xv) = fk(vw) + fk(wx) + fk(xv).

If deg(u) = 4, the faces uvw and uwx of Gk are contained within vwx of
Gk−1. The faces uxy and uyv are contained within vxy of Gk−1. Therefore
the faces of Gn corresponding to uvw and uxw in Gk all correspond to
vwx in Gk−1. So fk−1(vw) = fk−1(wx) = fk−1(xv) = fk(vw) + fk(wx).
Similarly fk−1(vx) = fk−1(xy) = fk−1(yv) = fk(xy) + fk(yv).

If deg(u) = 5, the faces of Gk within the pentagon vwxyz are not con-
tained within the resulting faces of of Gk−1. We arbitrarily choose the faces
uvw and uwx of Gk to correspond to vwx of Gk−1. Similarly, faces uyz and
uzv of Gk correspond to vyz of Gk−1. Face uxy of Gk corresponds to vxy
of Gk−1. Therefore fk−1(vw) = fk−1(wx) = fk−1(xv) = fk(vw) + fk(wx),
fk−1(vx) = fk−1(xy) = fk−1(yv) = fk(xy), and fk−1(vy) = fk−1(yz) =
fk−1(zv) = fk(yz) + fk(zv).

Let P (a) denote the cartesian coordinates in the plane which will be
assigned to vertex a, for all a ∈ V (G). When G3 is reached, let its vertices
be v,w, and x. One of the faces, vxw, will satisfy f3(vx) = f3(xw) =
f3(wv) = 1. The other face will have f3(vw) = f3(wx) = f3(xv) = f − 1,
where f is the number of faces of Gn. The vertices v, w and x can be
equally spaced along the circumference of a circle, creating an equilateral
triangle. The size of it will depend on the area available for drawing G.
The remaining vertices are then reinserted in reverse order, G3, G4, G5,
. . ., as follows. We use the labelling of Figs. 1, 2, and 3, where a vertex u
is to be restored to Gk to produce Gk+1.

2.1. If deg(u) = 3, then let N = fk(vw) + fk(wx) + fk(xv). Define

P (u) =
1

N
{P (v)fk(wx) + P (w)fk(xv) + P (x)fk(vw)}

Notice that this is a convex combination of P (v), P (w), and P (x). There-
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fore u will be placed inside the triangle of v, w, and x. It is proved below
that this weighted average assigns areas to uvw, uwx, and uxv proportional
to the number of faces of Gn corresponding to them.

2.2. If deg(u) = 4, then let Nv = fk(vw)+fk(yv) and Nx = fk(wx)+fk(xy).
Let N = Nv + Nx. Define

P (u) =
1

N
{P (v)Nx + P (x)Nv}

This is a convex combination of P (v) and P (x) which places u on the
diagonal edge connecting v to x.

2.3. If deg(u) = 5, then the placement of u in Read’s algorithm requires an
examination of 9 different cases that can arise concerning the shape of the
pentagon F = vwxyz. F is not always a convex polygon. We use the same
method for placing u as in Read’s algorithm. The weights fk(vw), etc. are
not used. See Read [5] for the details.

Using these weighted averages to place the deleted vertex gives the
resulting triangles an area proportional to the number of faces of Gn cor-
responding to the triangle. This is a consequence of the following lemma.

2.4 Lemma. Let P, Q, and R be three points in the plane, and let S
be any point inside the triangle PQR, that is, S = aP + bQ + cR, where
a, b, c > 0 and a + b + c = 1. Then A(SQR) = a.A(PQR), A(SRP ) =
b.A(PQR), and A(SPQ) = c.A(PQR), where A(PQR) denotes the area of
triangle PQR, etc.

Proof . Let (p1, p2) denote the coordinates of P , and similarly for Q and R.
Then the area of the triangle PQR is one half the determinant of the matrix
whose rows are R−P and Q−P . The area of the triangle SRP is one half
the determinant of the matrix whose rows are R−P and S−P . Substituting
symbolic co-ordinates for P, Q and R and using S = aP + bQ + cR, the
result follows upon expanding the determinants.

When a deleted vertex u of degree three is placed inside a face vwx
according to 2.1, N equals the total number of faces of Gn corresponding
to vwx, a = fk(wx)/N , the proportion of faces corresponding to uwx, and
so forth. So the areas of the three triangles created will be proportional to
the number of faces of Gn which correspond to them.

The use of these weighted averages to place the points produces a
straight-line embedding of G. It improves the layout of the graph because
of Lemma 2.4. It still gives an odd shape for the outer face. In section 4
we show how to make the outer face a regular polygon. We first need to
define a special family of graphs.
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3. A Family of Near Triangulations.

A near triangulation is a planar graph all of whose faces are triangles,
except possibly for one. We define a family of near triangulations NTm on
m = 1

2(q + 1)(q + 2) vertices, where q ≥ 0. This is an exceptional family
of graphs which must be characterized before the generalization of Read’s
algorithm is presented. It is a property of planar graphs that any face
can be chosen as the outer face in some embedding. We assume that the
non-triangular face of NTm will be the outer face.

3.1 Definition. Let m = 1
2(q + 1)(q + 2), where q ≥ 0. We define a near

triangulation NTm on m vertices.
1. If q = 0 then NT1 consists of a single vertex and no edges (the degen-

erate case).
2. Otherwise q ≥ 1. The outer face of NTm is a cycle C3q of length 3q.

Let (a0, a1, . . . , a3q−1) be the vertices of C3q.
3. If q = 1, then NT3 = C3, a triangle.
4. Otherwise q ≥ 2. Vertices a0, aq, and a2q have degree two. The vertices

adjacent to them are joined by edges: a3q−1 → a1, aq−1 → aq+1, and
a2q−1 → a2q+1.

5. If q = 2, this defines NT6, as shown in Fig. 6.
6. Otherwise q ≥ 3, so that m ≥ 10. Notice that m−3q = 1

2 (q−1)(q−2).
We then take a copy of NTm−3q and place it inside the cycle C3q .

7. If m− 3q = 1, then q = 3 and m = 10. We place NT1, a single vertex,
inside C3q , and join it to all vertices of the cycle except for a0, aq , and
a2q . This gives NT10, shown in Fig. 6.

8. Otherwise m− 3q > 1 and the outer face of NTm−3q is a cycle on 3q−
9 = 3p vertices, where p = q − 3. Let its vertices be (b0, b1, . . . , b3p−1).
Join b0 to a3q−2, a3q−1, a1 and a2. Join bp to aq−2, aq−1, aq+1 and aq+2.
Join b2p to a2q−2, a2q−1, a2q+1 and a2q+2. Let 1 ≤ i < p. Vertex bi is
joined to ai+1 and ai+2. Vertex bp+i is joined to aq+i+1 and aq+i+2.
Vertex b2p+i is joined to a2q+i+1 and a2q+i+2. This completes the
definition of NTm.

Fig. 6, The graphs NT6 and NT10.
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3.2 Lemma. Let m = 1
2 (q + 1)(q + 2), where q ≥ 1. Let NTm be as

defined above. Then NTm is a near triangulation, with one face C3q of
degree 3q. Vertices a0, aq and a2q have degree two. The other vertices of
C3q have degree 4. All remaining vertices of NTm have degree 6.

Proof . The proof is by induction on q. When q = 1, 2, or 3, the lemma
is true, as can be seen from Fig. 6. Suppose that it is true up to q =
p ≥ 3 and consider q = p + 3. NTm contains a cycle C3q with vertices
(a0, a1, . . . , a3q−1). Inside the cycle is a copy of NTm−3q . Since q ≥ 4, we
know that m − 3q = 1

2 (q − 1)(q − 2) = 1
2 (p + 1)(p + 2) ≥ 3. So the outer

face of NTm−3q is a cycle C3p, with vertices (b0, b1, . . . , b3p−1). According
to the induction hypothesis, in NTm−3q vertices b0, bp and b2p each have
degree 2. In NTm they are also joined to 4 more vertices each, eg., bp is
joined to aq−2, aq−1, aq+1 and aq+2. It follows that in NTm these vertices
have degree 6. If 1 ≤ i < p, vertices bi, bp+i and b2p+i are joined to 2 more
vertices each. Thus all vertices of NTm−3q have degree 6 in NTm.

Fig. 7, The graph NT21 (q = 5) containing NT6 (p = 2).

All faces inside NTm−3q are triangles, by the induction hypothesis. The
faces between C3q and C3p are also triangles, for the following reason. Ver-
tices b1, b2, . . . , bp−1 are each joined to two consecutive vertices of a2, a3, . . . ,
aq−2. Therefore each ai is also joined to two consecutive vertices bi−1 and
bi. This creates triangles between the two cycles, and also ensures that
each ai has degree 4, except for a0, aq and a2q , which have degree two.
This completes the proof of the lemma.

Given m = 1
2 (q + 1)(q + 2), where q > 0, it is easy to verify that

NTm consists of 1 + b q
3c concentric “shells”, where the innermost shell is

a single vertex if q ≡ 0 (mod 3). The outer shell is C3q with vertices
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(a0, a1, . . . , a3q−1). Figs. 6 and 7 show planar embeddings of NT6,NT10
and NT21 in which the vertices of C3q are equally spaced along the circum-
ference of a circle.

4. The Outer Face.
In this section we show how to make the outer face a regular polygon. Let
G be given. We assume that G is a 2-connected graph. (A graph which is
not 2-connected can be converted to a 2-connected graph by the addition
of some edges, which can later be removed once an embedding has been
constructed.) In order to select the outer face, we scan through all faces
of G and pick one of largest degree. Any face could be used, but it is
convenient to choose a face of largest degree. Let F be the the boundary
of this face, that is, F is a subgraph of G isomorphic to a cycle. Add a new
vertex x0 to G, adjacent to every vertex of F . This triangulates the face
F . Call the resulting graph G+. Now triangulate G+ by adding diagonals
to non-triangular faces. This gives a triangulation which we will still call
Gn, although it now has n+1 vertices. V (F ) is the set of vertices adjacent
to x0 in Gn. This is illustrated in Fig. 8.

Fig. 8, Triangulating the face with boundary F .

We now reduce Gn through Gn−1, Gn−2, Gn−3, . . .. The reduction
of Read’s algorithm is modified somewhat. We first select three vertices
u0, v0, w0 ∈ V (F ) which are approximately equally spaced with respect to
the cycle F . Write V0 = {x0, u0, v0, w0}. The vertices of V0 will not be
deleted during the reduction. The positions of the vertices of F are now
precomputed. We select a circle in the region available for drawing G, and
distribute the vertices of F evenly along the circle. This defines P (v) for
each v ∈ V (F ). When joined by straight lines, the vertices of F will form
a convex regular polygon in the final embedding. The vertices of Gn are
then classified according to their degree.

Now let Gk be given, where initially k = n. A vertex uk to be deleted is
selected so that uk 6∈ V (F ), whenever this is possible. Each Gk will contain
a cycle Fk consisting of the vertices adjacent to x0 such that V (Fk) ⊆ V (F ).
The remaining vertices of Gk are Rk = V (Gk) − V (Fk) − x0. The initial
situation is Fn = F .
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4.1. Choose uk according to the following rules.
1. If Gk contains a vertex u 6∈ V0 of degree 3 such that u ∈ Rk, then

uk = u.
2. Else if Gk contains a vertex u 6∈ V0 of degree 3 such that u ∈ Fk, then

uk = u.
3. Else if Gk contains a vertex u 6∈ V0 of degree 4 such that u ∈ Rk, then

uk = u.
4. Else if Gk contains a vertex u 6∈ V0 of degree 5 such that u ∈ Rk, then

uk = u.
5. Else if Gk contains a vertex u 6∈ V0 of degree 4 such that u ∈ Fk, then

uk = u.
6. If a vertex uk was found, then reduce Gk to Gk−1 by deleting uk as

in Read’s algorithm, as shown in Figs. 1, 2, and 3, with an additional
restriction: if uk ∈ Fk and deg(uk) = 4, let v and x be the vertices
adjacent to uk in the cycle Fk. Then vx is the diagonal added to
Gk − uk. This defines Fk−1 = Fk − uk + vx.

7. Set k := k− 1 and repeat from step 1 until either Rk = Ø or no vertex
uk satisfying the conditions was found.

Step 4.1.6 ensures that Fk−1 = Fk − uk + vw is a cycle in Gk−1. Notice
that Gk is always a triangulation on k + 1 vertices, and that every Gk

contains the vertices V0. If G3 is reached, it is a tetrahedron on the vertices
x0, u0, v0, w0.

4.2 Theorem. Let Gn be reduced by steps 4.1.1 to 4.1.7 above, through
Gn−1,Gn−2, . . . , Gk0 , where k0 ≥ 3. Then each Gk is a well-defined simple
triangulation, for k = n, n − 1, . . . , k0. For each value of k, Fk is a cycle
in Gk consisting of those vertices adjacent to x0. Each vertex of Gk has
degree at least three.
Proof . The proof is by reverse induction on k. When k = n it is clearly
true. Let uk be the vertex chosen to be deleted, according to steps 4.1.1 to
4.1.6 above. The vertices of Rk will eventually be embedded in the interior
of F . There are several cases to consider.

Case 1. deg(uk) = 3 (steps 4.1.1 and 4.1.2). If Gk − V0 contains a vertex
of degree three, it will be the first selected to be deleted. If uk ∈ Rk then
the reduction is exactly as in Fig. 1. Gk−1 = Gk − uk is a triangulation
and Fk−1 = Fk is the cycle adjacent to x0. If uk ∈ Fk, let v and w be the
vertices of Fk adjacent to uk. Then v → w since Gk is a triangulation, so
that Fk−1 = Fk −uk + vw is the cycle adjacent to x0. The degrees of v and
w will still be at least three.

Case 2. deg(uk) = 4, where uk ∈ Rk (step 4.1.3). This case can occur
only if V (Gk) − V0 has no vertex of degree three. The reduction is exactly
as in Fig. 2 where a diagonal edge vw is added. Gk−1 = Gk − uk + vw
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is a triangulation and Fk−1 = Fk is the cycle adjacent to x0. Note that
by 1.1, two vertices have their degree decreased by one. Every vertex of
V (Gk) − V0 has degree at least 4, so their degrees can decrease to 3, but
not to 2. The vertices of V0 are on the cycles Fk and Fk−1, and they are
adjacent to x0. Therefore they always have degree at least three.

Case 3. deg(uk) = 5, where uk ∈ Rk (step 4.1.4). This case can occur only
if V (Gk) − V0 has no vertex of degree three and no vertex of degree 4 not
on Fk. The reduction is exactly as in Fig. 3. Two diagonal edges vx and
vy are added. Gk−1 = Gk − uk + vx + vy is a triangulation and Fk−1 = Fk

is the cycle adjacent to x0. By 1.1, two vertices w and z have their degree
decreased by one. If w, z ∈ Rk, then they had degree at least 5. So they
now have degree at least 4. If one or both of them are on Fk their degree
could be as small as 4. So their degree would now be at least 3.

Case 4. deg(uk) = 4, where uk ∈ Fk (step 4.1.5). This case can occur
only if V (Gk) − V0 has no vertex of degree three and Rk has no vertex of
degree 4 or 5. So every vertex of Rk has degree at least 6. Let the vertices
adjacent to uk be v, w, x and x0 where v and x are the vertices adjacent to
uk on Fk, and w ∈ Rk. This is illustrated in Fig. 9.

Fig. 9, Vertex uk ∈ Fk, deg(uk) = 4.

If v 6→ x then we can delete uk and add the diagonal vx to get Gk−1 and
Fk−1, with the required properties. So suppose that v → x. The edge vx is
a chord of the cycle Fk creating a triangle vxuk. Let us delete all vertices of
Gk except those on or inside the triangle vxuk to get a graph H. Since Gk

is a triangulation, so is H . Every vertex of H has degree at least 6, except
for v, x, and uk. But if n3, n4, n5, . . . are the number of vertices of H of
degree 3, 4, 5, etc, then by 1.2, 3n3 + 2n4 + n5 = 12 + n7 + 2n8 + . . .. This
equation cannot be satisfied when all but three vertices of H have degree 6
or more. Therefore v 6→ x and Gk−1 and Fk−1 with the required properties
can always be formed, that is, the requirement of step 4.1.6 can always be
adhered to.
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It follows that the graphs Gn,Gn−1, . . . , Gk0 all have the required prop-
erties. The reduction process continues until either Rk = Ø, or until no
vertex uk of the desired type can be found. Gk0 is the last graph in the
sequence. If Rk0 = Ø, then the reinsertion process can be executed, since
V (Fk0) ⊆ V (F ) and the positions of the vertices of F have been precom-
puted. The vertex x0 is not embedded. Its only purpose is to ensure that
Gn is a triangulation and that the vertices of each Fk have degree at least
three. It is possible that Rk0 6= Ø, and that no vertex uk can be selected
according to the criteria of 4.1.1 to 4.1.5. There is a unique family of graphs
for which this occurs. They are the near triangulations NTm constructed
in section 3. This is characterized in the following sequence of lemmas.

4.3 Lemma. Suppose that Rk 6= Ø and that Gk contains no vertex uk

meeting the criteria of 4.1.1 to 4.1.5. Then
(i) every vertex of Rk has degree 6;
(ii) u0, v0, and w0 all have degree 3;

(iii) every vertex of Fk − V0 has degree 5.
Proof . Let ` denote the length of Fk, ie, ` = |V (Fk)|. Let Fk contain
m3,m4, m5, . . . vertices of degree 3, 4, 5, etc. Let Rk contain n3, n4, n5, . . .
vertices of degree 3, 4, 5, etc. Vertex x0 has degree `. Let N and ε denote
the number of vertices and edges of Gk, respectively. Note that Gk contains
no vertices of degree 2 or less. Then

∑
i≥3 mi = `, and

∑
i≥3 ni = N−`−1.

Each vertex of Fk is adjacent to x0 and to two other vertices of Fk, since Fk

forms a cycle. Let C denote the number of chords of Fk, and let X denote
the number of edges connecting Fk to Rk. Then

∑

i≥3

imi = 3` + 2C + X

and ∑

i≥3

imi +
∑

i≥3

ini = 2ε − `

From 1.2 we have 6N−2ε = 12. Into this we substitute N = 1+`+
∑

i≥3 ni

and 2ε = 4` + 2C + X +
∑

i≥3 ini, and simplify, to obtain

4.4. 3n3 + 2n4 + n5 = 6 + 2C + X − 2` + n7 + 2n8 + 3n9 + . . .

Every vertex of Fk, except for {u0, v0, w0}, has degree at least 5, for oth-
erwise 4.1.2 or 4.1.5 would apply. Its adjacencies to x0 and Fk account
for 3 incident edges. Therefore each contributes at least 2 edges to the
sum 2C + X. There are ` − 3 such vertices, so that 2C + X ≥ 2` − 6. If
2C + X > 2`− 6, then the right hand side of 4.4 is strictly positive, so that
Rk must have a vertex of degree 3, 4, or 5. So suppose that 2C+X = 2`−6.
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Notice that equality is possible only if vertices u0, v0, and w0 all have de-
gree exactly equal to 3, and every vertex of V (Fk) − V0 has degree exactly
equal to 5. This gives conditions (ii) and (iii) of the lemma. Substituting
2C + X = 2` − 6 into 4.4 gives 3n3 + 2n4 + n5 = n7 + 2n8 + 3n9 + . . .. If
Gk contains no suitable vertex uk, then by 4.1.1 to 4.1.5, Rk contains no
vertex of degree 3, 4, or 5, so that 3n3 +2n4 +n5 = 0. This is possible only
if n3 = n4 = n5 = n7 = n8 = . . . = 0. So every vertex of Rk has degree 6,
which is statement (i) above.

The conditions (i), (ii) and (iii) are very restrictive for Gk, since it is
a triangulation. The cycle Fk has three vertices u0, v0, w0 of degree three,
and all other vertices of degree five. Since Fk is a cycle, the vertices of
Fk have a natural cyclic ordering. For any a ∈ V (Fk), let a− and a+

respectively denote the vertices before and after a in the cyclic order of
Fk. Since Gk is a triangulation and deg(u0) = 3, it follows that u+

0 u−
0 is a

chord of Fk. Similarly for v+
0 v−0 and w+

0 w−
0 . Consequently ` ≥ 6 and Fk

has C ≥ 3 chords. This is illustrated in Fig. 10. Vertex x0 is not shown in
the diagram. It is understood that Fk is the outer face of Gk − x0.

Fig. 10, The cycle Fk, ` = 9 and ` = 12.

If ab is any chord of Fk, then it divides Fk into two paths, the vertices from
a+ up to b, and those from b+ up to a. Denote these two paths by [a+, b]
and [b+, a].

4.5 Lemma. Let Gk be as in 4.3. Then the cycle Fk has exactly three
chords, that is, C = 3.
Proof . Suppose that ab were a chord of Fk other than u+

0 u−
0 , v+

0 v−
0 , and

w+
0 w−

0 . Without loss of generality, choose ab so that one of the paths [a+, b]
and [b+, a] has minimum length, say it is [a+, b]. Refer to Fig. 11. Since
Gk is a triangulation, edge ab is contained in two triangles. There cannot
be an edge a+b or ab− since both of these would be chords with a shorter
path than [a+, b]. Therefore there is a vertex c ∈ Rk such that abc forms
a triangle on the same side of ab as a+. Since deg(a) ≤ 5 and deg(b) ≤ 5,
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there can be no more edges incident at a or b. But there must be another
triangle containing ab, on the other side of the edge. This is a contradiction.
Therefore u+

0 u−
0 , v+

0 v−
0 , and w+

0 w−
0 are the only chords of Fk.

Fig. 11, The cycle Fk with chord ab.

As a consequence of 4.5 we notice that if ` ≥ 9 the vertices {u+
0 , v+

0 ,
w+

0 , u−
0 , v−

0 , w−
0 } are all joined to Rk by exactly one edge. Call these type I

vertices. The remaining vertices of Fk (excluding u0, v0, w0) are joined to
Rk by exactly two edges. Call these type II vertices.

We show that Gk−x0 must be one of the graphs NTm. By Lemmas 4.3
and 4.5, every vertex of Rk has degree 6, and Fk has exactly three chords.
It is clear that NTm is a graph with these properties. We show that these
are the only graphs satisfying these restrictions. We will need the following
obsevation, which is an immediate consequence of 1.2.

4.6. Let U ⊆ Rk and let XU denote the number of edges with one end in
U . Then:

(i) if |U | = 1, then XU = 6;

(ii) if |U | = 2, then XU ≥ 10;

(iii) if |U | ≥ 3, then XU ≥ 12.

4.7 Lemma. Let a ∈ Rk and let u ∈ Fk be a type II vertex. Then a is
not adjacent to both u+ and u−.

Proof . If a → u+, u− then the cyle (a, u−, u, u+) encloses one or more faces
of Gk. Now u is a type II vertex, which can be joined to a by at most one
edge, since Gk is simple. Therefore there must be at least one vertex of
Rk inside the cycle (a, u−, u, u+). So let U be the vertices of Rk inside the
cycle. The number of edges from u, u+ and u− to U is at most 4. There
are at most 4 edges from a to U . Therefore XU ≤ 8. By 4.6 this requires
that |U | = 1, which is not possible since Gk is a simple graph.
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4.8 Theorem. Suppose that the reduction stops with Gk0 , where Rk0 6=
Ø. Then Gk0 − x0 is isomorphic to NTm for some m ≥ 10.
Proof . Write k = k0 and let ` be the length of Fk. If ` < 9 then one of
{u+

0 , v+
0 , w+

0 } is in the set {u−
0 , v−

0 , w−
0 }. Without loss of generality, suppose

that u+
0 = v−0 . The chords u−

0 u+
0 and v−

0 v+
0 must be contained in a triangle.

This implies that u−
0 v+

0 is a chord of Fk, which requires that w+
0 = u−

0 and
v+
0 = w−

0 so that ` = 6 and Rk = Ø. Therefore we may assume that ` ≥ 9.

Consider vertex u+
0 , which has degree 5. It is adjacent to x0 and to

three vertices of Fk. Since Fk has only three chords, and since ` ≥ 9, we
can assume without loss of generality that u+

0 → a ∈ Rk. The chord u+
0 u−

0

must be contained in two triangles. Since u+
0 has degree 5, it must be that

u−
0 → a, too. This accounts for all 5 edges at u+

0 and u−
0 . But the edge

au+
0 must also be contained in two triangles. Therefore a → u++

0 . Similarly
a → u−−

0 . See Fig. 12. Thus we have shown:

4.9. If u±
0 → a ∈ Rk then a → u+

0 , u++
0 , u−

0 , u−−
0 .

Fig. 12, u+
0 → a ∈ Rk implies that a → u+

0 , u++
0 , u−

0 , u−−
0

It is possible that u++
0 = v−0 . In this case, a → v+

0 , v++
0 , as well. This

makes deg(a) = 6. If ` = 9 then v++
0 = w−

0 and w++
0 = u−

0 . This accounts
for all edges incident with Fk, and so defines Gk − x0 = NT10. See Fig. 6.
Otherwise ` > 9. In the reduction algorithm 4.1, vertices u0, v0 and w0

were chosen to be evenly spaced along the cycle Fk. Consequently ` ≤ 11.
The cycle (a, v++

0 , . . . , w−
0 , w+

0 , . . . , u−−
0 ) has at most 7 vertices, which are

adjacent to Rk by at most 8 edges. By 4.6 there can be at most one vertex
of Rk inside this cycle. But this is impossible, since Gk is a simple graph.
It follows that if u++

0 = v−
0 , then Gk − x0 = NT10 is the only possibility.

We may therefore assume that ` ≥ 12.

Consider the edge au++
0 . u++

0 is a type II vertex. By Lemma 4.7,
a 6→ u+++

0 . Since au++
0 is contained in two triangles, there must be a

vertex b ∈ Rk such that b → a, u++
0 . This makes deg(u++

0 ) = 5. The
edge bu++

0 must also be contained in two triangles, so that we conclude
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that b → u+++
0 . At this point there are two possibilities. Either u+++

0

is a type II vertex, or else u+++
0 = v−0 . In the former case we invoke 4.6

applied to vertex b, and conclude that Rk contains a vertex c → b, u+++
0 .

Notice that b is adjacent to exactly two consecutive vertices of Fk. We
then apply the same argument to c. We get a path (a, b, c . . .) in Rk whose
vertices are joined to two consecutive vertices of Fk, until a vertex d → v−

0

is reached. By 4.9, d → v+
0 , v++

0 , v−
0 , v−−

0 . We then continue the argument
from v++

0 until w−
0 is reached, at which point we again invoke 4.9. The

final result is a cycle C = (a0, a1, a2, . . . , a`−9) in Rk with three vertices
a0, b0 and c0 each adjacent to 4 consecutive vertices of Fk. The remaining
vertices are each adjacent to two consecutive vertices of Fk. The vertices
a0, b0 and c0 are evenly spaced along C. If we now take the subgraph of
Gk induced by Rk and attach a vertex y0 adjacent to every vertex of C ,
we get a graph R+

k with exactly the same properties as Gk, but with fewer
vertices. We use induction and conclude that Rk = NTp for some p. But
then by the recursive definition of NTp we conclude that Gk − x0 = NTm,
where m = 1

2 ( `
3 + 1)( `

3 + 2). This completes the proof of the theorem.

The reduction process 4.1 reaches a graph Gk0 where either Rk0 = Ø
or else there is no suitable vertex uk to delete, in which case Gk−x0 = NTm

for some m ≥ 10. We then continue the reduction as follows.

4.10. If 4.1 terminates with Rk 6= Ø, change the set V0 to {x0, u
+
0 , v+

0 , w+
0 }.

Execute 4.1 again, until Rk = Ø.

4.11 Lemma. The reduction process 4.1 augmented by 4.10 always ter-
minates with Rk = Ø.
Proof . Vertices u0, v0 and w0 have degree three, so they can be deleted by
4.1.2 once 4.10 has been executed. Since u0, v0 and w0 are equally spaced
along Fk, so are u+

0 , v+
0 and w+

0 . Consequently if 4.1 again stops with
Rk 6= Ø, Gk will again be a near triangulation NTm, for some m, so that
4.10 can again be executed, until eventually Rk = Ø is reached.

Thus we always have Rk0 = Ø. The positions of the vertices of F
have all been previously computed. Their precomputed values will not be
changed. The vertex x0 is not embedded. We begin by embedding the
vertices of Fk0 according to their precomputed positions. We are now in a
position to reinsert the deleted vertices. Suppose that Gk−1 has just been
embedded and that we are about to reinsert the deleted vertex uk to get
Gk.

4.12. Reinsert vertex uk as follows.
1. If uk ∈ Fk, we assign uk its precomputed position P (uk).
2. If uk ∈ Rk, we compute P (uk) as a weighted average according to 2.1.
3. Set k := k + 1 and repeat until k = n is reached.
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4.13 Theorem. Let F be any face of G and let Gn,Gn−1, . . . , Gk0 be
constructed as above. The reinsertion algorithm produces a straight line
planar embedding of G such that the vertices of F lie on a regular polygon.
Proof . First, it is clear the vertices of F lie on a regular polygon. When
Gk0 is reached, a straight-line embedding planar of it is constructed. We
must show that when vertex uk is re-inserted in Gk−1, that the resulting
embdding of Gk is a planar embedding. If uk ∈ Rk, then uk is placed inside
a triangle of Gk−1, according to 2.2. Read’s algorithm [5] guarantees that
the resulting Gk will be a straight line planar embedding. If uk ∈ Fk, then
P (uk) has been previously computed. When uk was deleted, it had degree
3 or 4. If deg(uk) = 3, it is adjacent only to vertices of Fk and x0. Since x0

is not embedded, and the vertices of Fk lie on a circle, Gk will be a planar
embedding in this case. If deg(uk) = 4, then uk is adjacent to only one
vertex of Rk. This is the third vertex of the triangle containing the vertices
of Fk adjacent to uk. Clearly no crossing can be introduced by joining uk

to this vertex. So Gk is a straight-line planar embedding in all cases. This
completes the proof of the theorem.

The embeddings produced by this algorithm for the graphs of Figs. 4, 5,
and 6 are shown below. This is the basic algorithm used by the “Groups &
Graphs”* software [3], version 2.3, to produce planar layouts. It is also used
to “pivot” a given embedding of a planar graph by selecting an arbitrary
face F as the outer face.

Fig. 13, Embeddings of the cube and Tutte’s graph.

The algorithm has linear complexity. The degrees of the vertices are
computed. This requires O(n) steps. They are in the range 2,3, . . . , n− 1,

* Available on the internet via anonymous ftp from ftp://ftp.cc.umanitoba.ca/pub/mac,

or from http://130.179.24.217/G&G/G&G.html
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so that they can be sorted in linear time. The degrees of the faces are also
computed, which again takes linear time (see [4]). A face F is selected as the
outer face, and the coordinates of its vertices are computed. The remaining
faces of G are triangulated, which again takes linear time, by 1.2. There are
a number of iterations in which a vertex uk to be deleted is selected. Each
deletion takes at most a constant number of steps, since deg(uk) ≤ 5. Each
time 4.10 is executed, only a constant number of steps are required. It is
executed a linear number of times. When Gk0 is reached, it is embedded
in linear time. The re-insertion process again takes linear time. So the
entire algorithm is O(n). In practice, using the Groups & Graphs software,
embeddings of graphs are produced almost instantaneously, up to around
100 vertices or more.

A number of modifications of this basic algorithm are possible. For
example, it was found that with the linearly weighted averages of 2.1, long
thin triangles and smaller, more compact triangles of equal area are given
equal preference, because of 2.4. We found that in practice, it was conve-
nient to modify the linear weights slightly to reduce the tendency to produce
long thin triangles. We also found it suitable to modify 2.2 for vertices of
degree 4, by allowing the reinserted vertex to move off the edge connecting
v to x. Another modification that we have experimented with is this. Once
G has been embedded, use the method of Eades [2] which places “springs”
on the edges, and allow the vertices to “vibrate” for several iterations. This
has the effect of spreading the distribution of vertices more evenly on the
plane, and reducing the average edge-length. However it is non-linear, and
tends to introduce crossings if one is not careful.
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