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Abstract
Let G and H be graphs with a common vertex set V , such that G−i ∼= H−i,

for all i ∈ V . Let pi be the permutation of V − i that maps G− i to H − i, and
let qi denote the permutation obtained from pi by mapping i to i. It is shown
that certain algebraic relations involving the edges of G and the permutations
qiq

−1
j and qiq

−1
k , where i, j, k ∈ V are distinct vertices, often force G and H to

be isomorphic.

1. Permutations and Partial Permutations

Let G and H be graphs with a common vertex set V , such that G − i ∼= H − i, for
all i ∈ V . Ulam’s conjecture, also known as the graph reconstruction conjecture (see
Bondy [1]), states that this condition implies that G ∼= H, if |V | ≥ 3. All graphs that
we will work with are simple graphs, with the same vertex set V . We will view a graph
G as a set of edges, where each edge is an unordered pair of distinct vertices. We write(
V
2

)
for the set of all unordered pairs of vertices. Thus, G ⊆

(
V
2

)
. The complement of G

is G =
(
V
2

)
−G. An unordered pair of vertices is denoted by [x, y]. (The square brackets

are convenient when it is necessary to construct sets of unordered pairs.) It will often be
convenient to write [x, y]G = 1 to mean that [x, y] ∈ G, and [x, y]G = 0 to mean that
[x, y] 6∈ G. Given a permutation q of V , and a vertex x ∈ V , the image of x under q is
denoted xq. Then [x, y]q = [xq, yq]. We also write Gq for the graph obtained from G by
permuting each edge of G by q. Let pi be an isomorphism of G − i with H − i, so that
(G − i)pi = H − i. Then pi is a partial permutation of the set V . It does not map the
point i.
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1.1 Definition. A partial permutation p of V is an injective mapping from a proper
subset X ⊂ V to a proper subset Y ⊂ V . A partial automorphism of a graph G is a partial
permutation p such that for all [x, y] ∈

(
V
2

)
:

1) if [x, y] ∈ G and [x, y]p is defined, then [x, y]p ∈ G; and
2) if [x, y] 6∈ G and [x, y]p is defined, then [x, y]p 6∈ G;

The inverse of a partial permutation is also a partial permutation. Notice that partial
permutations can be composed. If pi and pj are partial permutations, so is pip

−1
j . The

result is another partial permutation. Permutations and partial permutations are com-
posed from left to right, so that the product pip

−1
j means “first pi, then p−1

j ”. Partial
permutations were applied to the graph reconstruction problem in Kocay [3].

We say that the image [x, y]pip
−1
j exists if pip

−1
j can be applied to both x and y. We

are given the graphs G and H such that (G − i)pi = H − i, for all i. Notice that for all
i, j ∈ V , pip

−1
j is a partial automorphism of G, and p−1

j pi is a partial automorphism of H,

because pi and pj are isomorphisms. Notice that if [x, y]pip
−1
j exists, then [x, y] ∈ G if and

only if [x, y]pip
−1
j ∈ G, since pip

−1
j is a partial automorphism of G.

1.2 Lemma. Let [x, y] be a pair of vertices of V . Then the image [x, y]pip
−1
j exists if and

only if x, y 6∈ {i, jp−1
i }. The image [x, y]p

−1
j

pi exists if and only if x, y 6∈ {j, ipj}.

The partial permutation pi can be converted to a permutation qi, by extending pi to
act on i, defining iqi = i. Notice that qiq

−1
j is in general not an automorphism of G.

1.3 Lemma. There are two possibilities for the cycle structure of qiq
−1
j . Either i and j

are in the same cycle, or they are in different cycles.

The two cases for the cycle structure of qiq
−1
j are illustrated in Figure 1. We say that

qiq
−1
j is of type 1 if i and j are in the same cycle, and of type 2 if they are in different

cycles. The arrow in the diagrams indicates the direction of the cycle, and also indicates
those links in the cycle which pip

−1
j cannot follow.

Figure 1, The cycle structure of qiq
−1
j , types 1 and 2
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We assume the basic theory of graph reconstruction. The reader is referred to the sur-
vey papers by Bondy and Hemminger [1], Bondy [2], and Nash-Williams [4]. In particular,
given a fixed graph K with fewer than |V | vertices, Kelly’s lemma says that the number
of subgraphs of G isomorphic to K equals the number of subgraphs of H isomorphic to
K. Consequently G and H have the same number of edges. The degree of a vertex i in a
graph G is denoted deg(i, G). By Kelly’s lemma, deg(i, G) = deg(i,H).

We will often be concerned with the difference between two nearly identical graphs
G and G′. The exclusive or (also called symmetric difference) of graphs G and G′ is
denoted G⊕G′ = (G−G′) ∪ (G′ −G). If G and G′ have the same number of edges, then
|G−G′| = |G′ −G|, so that |G⊕G′| is even.

1.4 Lemma. Gqi ⊕H consists of pairs of the form [i, x].
Proof . This follows because (G− i)pi = H − i.

1.5 Lemma. If deg(i, G) = deg(iqj , G), for some i and j, where i 6= j, then [i, j] ∈ G if
and only if [iqj , j] ∈ H.
Proof . By Kelly’s lemma, deg(i, G) = deg(i, H) and deg(iqj , G) = deg(iqj ,H). Since
deg(i, G) = deg(iqj , G) = deg(iqj ,H) and deg(i, G − j) = deg(iqj ,H − j), the conclusion
follows.

1.6 Corollary. If iqj = i for some i and j, where i 6= j, then [i, j] ∈ G if and only if
[i, j] ∈ H.
Proof . If iqj = i, then deg(i, G) = deg(iqj , G). The result follows from the previous lemma.

1.7 Corollary. Given any qj , Gqj = H if and only if qj preserves degree.
Proof . If Gqj = H, then deg(i, G) = deg(iqj ,H) = deg(iqj , G), so that qj preserves degree.
Conversely, suppose that qj preserves degree. We have deg(i, G) = deg(iqj , G), for all
i 6= j. It follows that [i, j] ∈ G if and only if [iqj , j] ∈ H; that is, Gqj = H.

The automorphism group of a graph G is denoted aut(G).

1.8 Lemma. If qiq
−1
j ∈ aut(G) for some i 6= j, then Gqi = Gqj = H.

Proof . If qiq
−1
j ∈ aut(G), then Gqiq

−1
j = G, so that Gqi = Gqj . We show that Gqi = H.

Let [x, y] ∈ G. If i 6∈ {x, y}, then [x, y]qi ∈ H. Otherwise, let [i, x] ∈ G. Then since
qiq

−1
j ∈ aut(G), we have [i, x]qiq

−1
j = [iq

−1
j , xqiq

−1
j ] ∈ G. If j 6= xqiq

−1
j , apply qj to get

[iq
−1
j , xqiq

−1
j ]qj ∈ H, or [i, x]qi ∈ H. Otherwise x = jq−1

i . We thus have, that [x, y] ∈ G

if and only if [x, y]qi ∈ H, for all pairs [x, y], except possibly for the pair [x, y] = [i, jq−1
i ].

But G and H have the same number of edges. Therefore we also have [i, jq−1
i ] ∈ G if and

only if [i, j] ∈ H, so that Gqi = H.

1.9 Corollary. If qi = qj , for some i 6= j, then Gqi = H.
Proof . If qi = qj , then qiq

−1
j ∈ aut(G).
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Lemma 1.8 is one of the simplest possible cases of an algebraic relation on the per-
mutations qi implying the reconstructibility of G; namely Gqiq

−1
j = G implies that G is

reconstructible. In this paper, we show that reconstructibility can also be implied by a
weaker algebraic relation. We consider the case when qiq

−1
j is not an automorphism of

G, but where there exists an algebraic relation of the form Gqiq
−1
j = Gqkq−1

` , for suitable
vertices i, j, k, and `.

Notice that if Gqiq
−1
j = Gqkq−1

j , we can apply qj to each side of the equation and
obtain Gqiq

−1
k = G, from which Lemma 1.8 gives G ∼= H. Thus, the cases to consider are:

1. Gqiq
−1
j = Gqjq−1

i , where i 6= j;
2. Gqiq

−1
j = Gqiq

−1
k , where i, j, and k are distinct;

3. Gqiq
−1
j = Gqkq−1

i , where i, j, and k are distinct;
4. Gqiq

−1
j = Gqkq−1

` , where i, j, k, and ` are distinct.

Notice that we do not need to consider the case Gqiq
−1
j = Gqjq−1

k , because relabelling
the subscipts i, j, k as k, i, j reduces it to case 3. In this paper we shall consider the first
two of these possibilities.

Given any pair [x, y], we can apply qiq
−1
j to it repeatedly to obtain a cyclic sequence

of pairs, which we will denote by Ω(x, y), the pair-orbit of [x, y]. It has the property
that Ω(x, y)qiq

−1
j = Ω(x, y). If we conjugate qiq

−1
j by qi or qj , we obtain the permutation

q−1
j qi. Therefore, if Ω is a pair-orbit of qiq

−1
j , then Ωqi is a pair-orbit of q−1

j qi, and
furthermore, Ωqi = Ωqj . If G were composed of a union of pair orbits, Ω(x, y), then since
Ω(x, y)qi = Ω(x, y)qj , we would have Gqi = Gqj , so that G ∼= H, by Lemma 1.8. Therefore
there must be at least one pair-orbit Ω(x, y) that is only partially contained in G.

1.10 Lemma. Let Ω = Ω(x, y) be a pair-orbit of qiq
−1
j , and let C be a cycle of qiq

−1
j .

Then deg(u, Ω) = deg(v,Ω) for all u, v ∈ C.

Proof . There are three possibilities: x, y ∈ C; x ∈ C and y 6∈ C; or x, y 6∈ C. The result
follows easily in each case.

2. Gqiq
−1
j = Gqjq−1

i

We assume throughout this section that Gqiq
−1
j = Gqjq−1

i , for some i 6= j. We have
(qiq

−1
j )2 ∈ aut(G).

2.1 Lemma. qiq
−1
j ∈ aut(G⊕Gqiq

−1
j ) and qiq

−1
j ∈ aut(G∩Gqiq

−1
j ) and qiq

−1
j ∈ aut(G∩

G
qiq

−1
j ).

Proof . Since Gqiq
−1
j = Gqjq−1

i , we have (G ⊕ Gqiq
−1
j )qiq

−1
j = G ⊕ Gqiq

−1
j . Similarly for

G ∩Gqiq
−1
j and G ∩G

qiq
−1
j .
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It follows from Lemma 2.1 that if [x, y] ∈ G ⊕ Gqiq
−1
j then Ω(x, y) ⊆ G ⊕ Gqiq

−1
j ;

similarly, if [x, y] ∈ G ∩Gqiq
−1
j , then Ω(x, y) ⊆ G ∩Gqiq

−1
j ; and if [x, y] ∈ G ∩G

qiq
−1
j then

Ω(x, y) ⊆ G ∩G
qiq

−1
j .

2.2 Lemma. Let [x, y] ∈ G ⊕ Gqiq
−1
j . Then [x, y]pip

−1
j and [x, y]pjp−1

i do not exist.

Consequently, {x, y} ∩ {i, jq−1
i } 6= Ø and {x, y} ∩ {j, iq

−1
j } 6= Ø.

Proof . If [x, y] ∈ G − Gqiq
−1
j , then [x, y]qiq

−1
j ∈ (G − Gqiq

−1
j )qiq

−1
j = Gqiq

−1
j − G. Hence

[x, y]pip
−1
j does not exist, since [x, y]qiq

−1
j 6∈ G. Similarly if [x, y] ∈ Gqiq

−1
j −G. By Lemma

1.2, we have {x, y} ∩ {i, jq−1
i } 6= Ø. Similarly for [x, y]pjp−1

i .

2.3 Lemma. Let [x, y] ∈ G ⊕ Gqiq
−1
j , and let Ω = Ω(x, y). Then |Ω ∩ (G − Gqiq

−1
j )| =

|Ω ∩ (Gqiq
−1
j −G)|, and |Ω| is even.

Proof . This follows since (G−Gqiq
−1
j )qiq

−1
j = Gqiq

−1
j −G.

Case (a). qiq
−1
j is of type 1.

Consider a pair [x, y] ∈ G ⊕ Gqiq
−1
j . Let Cij denote the cycle of qiq

−1
j containing i and

j. Then iq
−1
j and jq−1

i are also in Cij . By Lemma 2.2, we have x, y ∈ Cij . If Cij had
odd length, then |Ω(x, y)| would be odd, a contradiction. We conclude that Cij has even
length. Now |Cij | 6= 2, since this implies that iqiq

−1
j = j, so that i = j, a contradiction.

Therefore Cij has at least 4 vertices, so that it has at least 2 vertices other than {i, j}.
There are two possibilities to consider, either iq

−1
j and jq−1

i are distinct vertices, or else
iq
−1
j = jq−1

i .

2.4 Theorem. If Gqiq
−1
j = Gqjq−1

i , and qiq
−1
j is of type 1, and iq

−1
j 6= jq−1

i then G ∼= H.

Proof . We have [x, y] ∈ G ⊕ Gqiq
−1
j . By Lemma 2.2, every pair of Ω(x, y) must intersect

both {i, jq−1
i } and {j, iq

−1
j }. It follows that |Cij | = 4. Refer to Figure 2. Write the cycle

Cij as (i, iq
−1
j , jq−1

i , j). Clearly Ω(x, y) = Ω(i, j). Without loss of generality, we can take
Ω ∩ (G − Gqiq

−1
j ) = {[i, j], [iq

−1
j , jq−1

i ]} and Ω ∩ (Gqiq
−1
j − G) = {[i, iq

−1
j ], [j, jq−1

i ]}. Hence,
|G − Gqiq

−1
j | = |Gqiq

−1
j − G| = 2. We see that i, iq

−1
j , jq−1

i and j all have degree one in
G−Gqiq

−1
j . By Lemma 1.10, they all have the same degree in G, call it α.

Figure 2, G and H when |Cij | = 4 and iq
−1
j 6= jq−1

i
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We now find (G − i)pi and (G − j)pj in order to find H. We know that Cqi

ij =

(i, iq
−1
j

qi , j, jqi) is a cycle of q−1
j qi, as shown in Figure 2. If u 6∈ Cij , then deg(u, G) =

deg(uqi ,H), by Lemma 1.10, since Ω(i, j) is the only pair-orbit that is only partially
contained in G. We find that [iq

−1
j , jq−1

i ]qi = [j, iq
−1
j

qi ] ∈ H and [iq
−1
j , jq−1

i ]qj = [i, iq
−1
j

qi ] ∈
H, since jq−1

i
qj = iq

−1
j

qi . Therefore deg(iq
−1
j

qi ,H) = α + 1. We also find that [j, jq−1
i ]qi =

[j, jqi ] 6∈ H and [i, iq
−1
j ]qj = [i, jqi ] 6∈ H, since iqj = jqi . It follows that deg(jqi ,H) = α−1.

But G and H must have the same degree sequences, a contradiction. We conclude that
G − Gqiq

−1
j = Gqiq

−1
j − G = Ø, so that G = Gqiq

−1
j , from which it follows that G ∼= H, by

Lemma 1.8.

The second possibility is when iq
−1
j = jq−1

i . This is illustrated in Figure 3.

2.5 Theorem. If Gqiq
−1
j = Gqjq−1

i , and qiq
−1
j is of type 1, and iq

−1
j = jq−1

i then either
Gqi = H or else Gqi ⊕H = {[i, j], [i, jqi ]}. Furthermore, [i, j] ∈ G if and only if [i, j] ∈ H.
If [i, j] ∈ G then (G− [i, j])qi = H − [i, j]. If [i, j] 6∈ G then (G + [i, j])qi = H + [i, j].
Proof . We have [x, y] ∈ G ⊕ Gqiq

−1
j , where x, y ∈ Cij . By Lemma 2.2, every pair of

Ω(x, y) must intersect both {i, iq
−1
j } and {j, iq

−1
j }. It follows that |Cij | = 4, that is Cij =

(i, iq
−1
j , j, iqjq−1

i ). Notice that [j, iqjq−1
i ]pip

−1
j exists, so that by Lemma 2.2, Ω([j, iqjq−1

i ]) 6⊆
G ⊕ Gqiq

−1
j . Therefore either [x, y] = [i, j] or else [x, y] = [iq

−1
j , iqjq−1

i ], so that we again
have Ω(x, y) = Ω(i, j). Without loss of generality, we can take Ω ∩ (G−Gqiq

−1
j ) = {[i, j]}

and Ω ∩ (Gqiq
−1
j − G) = {[iqjq−1

i , iq
−1
j ]}. Hence, |G − Gqiq

−1
j | = |Gqiq

−1
j − G| = 1. By

Lemma 1.10, the vertices of Cij all have the same degree in G − [i, j], call it α. Then
deg(i, G) = deg(j,G) = α + 1 and deg(iq

−1
j , G) = deg(iqjq−1

i , G) = α.

Figure 3, G and H when |Cij | = 4 and iq
−1
j = jq−1

i

We now find (G − i)pi and (G − j)pj in order to find H. Since [iq
−1
j , iqjq−1

i ] 6∈ G,
we find that [iq

−1
j , iqjq−1

i ]qi = [j, iqj ] 6∈ H and [iq
−1
j , iqjq−1

i ]qj = [i, jqi ] 6∈ H. Therefore
(Ω(i, j))qi ∩H = Ø. We know that either Ω(i, iq

−1
j ) ⊆ G or Ω(i, iq

−1
j ) ⊆ G. Suppose that

Ω(i, iq
−1
j ) ⊆ G. Then |(Ω(i, iq

−1
j )qi ∩H| ≤ 4. But Ω(i, iq

−1
j ) and Ω(i, j) together contain 5

edges of G. This is impossible, as G and H have the same number of edges. We conclude
that Ω(i, iq

−1
j ) ⊆ G. We then find that [j, jq−1

i ]qi = [j, jqi ] ∈ H; [j, iqjq−1
i ]qi = [iqj , jqi ] ∈ H;
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and [i, iq
−1
j ]qj = [i, iqj ] ∈ H. Of the 4 edges of Ω(i, iq

−1
j )qi , at most one of them, namely

[i, j], can be an edge of H. Since G and H have the same number of edges, we conclude
that [i, j] ∈ H. It then follows that (G − [i, j])qi = H − [i, j]. Notice that deg(i, H) =
deg(j, H) = α + 1 and that deg(iqj ,H) = deg(iqj ,H) = α.

If we do not have [i, j] ∈ G−Gqiq
−1
j , then the alternative is [iqjq−1

i , iq
−1
j ] ∈ G−Gqiq

−1
j .

The analysis is very similar. We find that (Ω(i, j))qi ⊆ H and that [j, jqi ], [iqj , jqi ], [i, iqj ] ∈
H but that [i, j] 6∈ H. It follows that (G + [i, j])qi = H + [i, j].

Case (b). qiq
−1
j is of type 2.

Let Ci denote the cycle of qiq
−1
j containing i, and Cj the cycle containing j. Refer to the

cycle structure of qiq
−1
j illustrated in Figure 1, for a type 2 permutation. Suppose first that

|Ci| ≥ 2 and |Cj | ≥ 2. By Lemma 2.2, G ⊕ Gqiq
−1
j ⊆ {[i, j], [i, iq

−1
j ], [j, jq−1

i ], [iq
−1
j , jq−1

i ]}.
If [i, iq

−1
j ] ∈ G ⊕ Gqiq

−1
j , then by Lemma 2.1, Ω(i, iq

−1
j ) ⊆ G ⊕ Gqiq

−1
j . Since i, iq

−1
j ∈ Ci,

we then must have Ω(i, iq
−1
j ) = {[i, iq

−1
j ]}, which contradicts Lemma 2.3. Similarly if

[j, jq−1
i ] ∈ G ⊕ Gqiq

−1
j . It follows that G ⊕ Gqiq

−1
j = {[i, j], [iq

−1
j , jq−1

i ]}. Lemma 2.1 then
implies that jqiq

−1
j = jq−1

i so that Cj = (j, jq−1
i ). Similarly we have Ci = (i, iq

−1
j ), so that

iq
−1
j

qi = iqj and |Ci| = |Cj | = 2.

2.6 Theorem. Suppose that Gqiq
−1
j = Gqjq−1

i , that qiq
−1
j is of type 2, and that |Ci| =

|Cj | = 2. Then either Gqi = H, or else Gqi ⊕H = {[i, j], [i, jqi ]}.
Proof . We have Ci = (i, iq

−1
j ) and Cj = (j, jq−1

i ). If G ⊕ Gqiq
−1
j = Ø, then Gqi = H, by

Lemma 1.8. Otherwise G⊕Gqiq
−1
j = {[i, j], [iq

−1
j , jq−1

i ]}. Refer to Figure 4.

Figure 4, G and H when |Ci| = |Cj | = 2

We now calculate (G − i)pi and (G − j)pj in order to find H. We have [iq
−1
j , jq−1

i ] ∈
G⊕Gqiq

−1
j . Therefore [iq

−1
j , jq−1

i ]pj = [i, jqi ] ∈ Gqi ⊕H. If [i, u] ∈ Gqi ⊕H, where u 6= j,
then [i, u]p

−1
j = [iq

−1
j , uq−1

j ] ∈ G ⊕ Gqiq
−1
j . It follows that uq−1

j = jq−1
i , so that u = jqi .

Since Gqi ⊕H must be even, we conclude that Gqi ⊕H = {[i, j], [i, jqi ]}. ‖

It follows from Theorem 2.6, that either [i, j] ∈ G and [iq
−1
j , jq−1

i ] 6∈ G, in which case
[i, j] ∈ H and [i, jqi ] 6∈ H, or else vice versa. Notice the following:
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• [i, j] ∈ G if and only if [i, j] ∈ H

• [i, iq
−1
j ] ∈ G if and only if [i, iq

−1
j ]pj = [i, iqj ] ∈ H

• [j, jq−1
i ] ∈ G if and only if [j, jq−1

i ]pi = [j, jqi ] ∈ H

• [iq
−1
j , jq−1

i ] ∈ G if and only if [i, jqi ] ∈ H and [j, iqj ] ∈ H

• [i, jq−1
i ] ∈ G and [j, iq

−1
j ] ∈ G if and only if [iqj , jqi ] ∈ H

We can construct graphs G and H satisfying Theorem 2.6, as shown in Figure 5.
Since G and H have the same number of edges, there are only two possibilities for
the four pairs connecting Ci and Cj . Either only [i, j] ∈ G and [i, j] ∈ H, or else
[i, jq−1

i ], [j, iq
−1
j ], [iq

−1
j , jq−1

i ] ∈ G, and [i, jqi ], [j, iqj ], [iqj , jqi ] ∈ H. In Figure 5, the cy-
cles of qiq

−1
j are represented by ellipses of vertices that are alternately white and black.

There may be other edges between the cycles, and there may be additional cycles, as well.
It is evident from the construction that (G − i)qi = H − i and that (G − j)qj = H − j,
and that |Ci| = |Cj | = 2. In this example, G and H are isomorphic. However, this is not
necessarily so, as we can add additional edges between the two cycles, as well as additional
cycles. The resulting graphs would then not be hypomorphic, although we do not know
how to prove this in general.

Figure 5, Possible graphs G and H when |Ci| = |Cj | = 2

Consider now the case when |Ci| = 1 and |Cj | ≥ 2. Since iqj = i, by Corollary 1.6,
we have [i, j] ∈ G if and only if [i, j] ∈ H. Now [i, j] ∈ G if and only if [i, j]qj = [i, j] ∈
Gqj . Therefore [i, j] 6∈ Gqj ⊕ H. Suppose that [j, u] ∈ Gqj ⊕ H. Since u 6= i, we have
[j, u]p

−1
i ∈ G ⊕ Gqiq

−1
j . By Lemma 2.2, it follows that {jq−1

i , uq−1
i } ∩ {i, jq−1

i } 6= Ø and
{jq−1

i , uq−1
i } ∩ {i, j} 6= Ø. The second condition implies that u = jqi . Hence Gqj ⊕ H ⊆

{[j, jqi ]}. But since |Gqj ⊕H| is even, it follows that Gqj = H. We summarise the previous
results in the following theorem.

2.7 Theorem. Suppose that Gqiq
−1
j = Gqjq−1

i , and that qiq
−1
j is of type 2. If |Ci| 6= |Cj |

or if |Ci| = |Cj | ≥ 3 then G ∼= H. If |Ci| = |Cj | = 2, then either Gqi = H or else
Gqi ⊕H = {[i, j], [i, jqi ]}.

8



There remains the situation when |Ci| = |Cj | = 1. We then have iqj = i and jqi = j.
Lemma 2.2 now only says that [x, y] ∈ G ⊕ Gqiq

−1
j satisfies {x, y} ∩ {i, j} 6= Ø. Since

qiq
−1
j fixes both i and j, it acts as an automorphism of G− {i, j}, and so (G− {i, j})qi =

(G − {i, j})qj = H − {i, j}. The vertices of G are organized into cycles of qiq
−1
j . Since

(qiq
−1
j )2 ∈ aut(G), we know that if i or j is joined to a vertex on a cycle of qiq

−1
j , then

it is also joined to every second vertex on the cycle. We can construct graphs G and H
satisfying these requirements, as shown in Figure 6. In the diagram on the left, the cycles
of qiq

−1
j are represented by ellipses of vertices that are alternately white and black. It is

evident from the construction that (G − i)qi = H − i and that (G − j)qj = H − j, and
that |Ci| = |Cj | = 1. In this example, G and H are not hypomorphic. However, we do
not know how to prove this in general. It may even be that (qiq

−1
j )2 is the identity, so

that the cycles of qiq
−1
j have length at most two. This case is illustrated in the diagram

on the right. It is very easy to see that the graphs of this example are not hypomorphic,
but more complicated examples could be constructed.

Figure 6, Possible graphs G and H when |Ci| = |Cj | = 1

3. Gqiq
−1
j = Gqiq

−1
k , where i, j, and k are distinct.

We assume throughout this section that Gqiq
−1
j = Gqiq

−1
k . Let G′ = Gqiq

−1
j = Gqiq

−1
k .

Notice that (G′)qjq−1
k = Gqiq

−1
j

qjq−1
k = Gqiq

−1
k = G′. This gives:

3.1 Lemma. Let Gqiq
−1
j = Gqiq

−1
k , where i, j, and k are distinct. Then qjq

−1
k ∈ aut(G′).

Since pip
−1
j is a partial automorphism of G, it follows that G and G′ are nearly

identical. We are concerned with G⊕G′, the difference between G and G′. Suppose that
[x, y] ∈ G ⊕ G′. If [x, y]pjp−1

i existed, then we could apply pip
−1
j to it. Since pip

−1
j is a

partial automorphism of G, and since qiq
−1
j maps edges of G to edges of G′, we obtain

[x, y]G = [x, y]G′ , a contradiction. It follows that [x, y]pjp−1
i does not exist, so that by

Lemma 1.2, {x, y} ∩ {j, iq
−1
j } 6= Ø. Since G′ can also be written as Gqiq

−1
k , we conclude

that {x, y} ∩ {k, iq
−1
k } 6= Ø is also a requirement. This gives:

9



3.2 Lemma. If {j, iq
−1
j } and {k, iq

−1
k } are disjoint, then G and G′ can differ in at most

4 pairs, [j, k], [j, iq
−1
k ], [k, iq

−1
j ], and [iq

−1
j , iq

−1
k ].

We will prove that when {j, iq
−1
j } and {k, iq

−1
k } are disjoint, G and H are always

isomorphic; that is, the algebraic condition Gqiq
−1
j = Gqiq

−1
k implies the reconstructibility

of G, when |{j, k, iq
−1
j , iq

−1
k }| = 4. The proof consists of a number of cases, determined by

the cycle structure of the permutation qjq
−1
k . We will prove that in each case, H is equal

to one of Gqi , Gqj , or Gqk .
Notice that the graphs G, G′,H, Gqi , Gqj , and Gqk all have the same number of edges.

Therefore any symmetric difference of the form G⊕G′, G⊕H, Gqi ⊕H, etc., all have an
even number of pairs, and that |G−G′| = |G′ −G|, etc. We can conclude that if G⊕G′

has four pairs, that |G−G′| = |G′ −G| = 2.
The technique used in each case is based on the following idea: Given G ⊕ G′, we

apply the mappings pj and pk to its pairs. Applying pj and pk to pairs of G will result in
pairs of H. Since G′ = Gqiq

−1
j = Gqiq

−1
k , applying pj or pk to pairs of G′ will result in pairs

of Gqi . Therefore, applying pj and pk to pairs of G − G′ will give pairs of H − Gqi and
applying pj and pk to pairs of G′ −G will give pairs of Gqi −H. So given G⊕G′, we can
often obtain Gqi ⊕H.

We look at the cycle structure of qjq
−1
k . We assume that G and H are non-isomorphic,

hypomorphic graphs, and obtain a contradiction in each case.

3.3 Lemma. Gqi ⊕ H consists of all pairs [x, y]pj and [x, y]pk which exist, such that
[x, y] ∈ G⊕G′.
Proof . Recall that qj and qk both map G′ to Gqi , and that pj and pk both map pairs of
G to H. Therefore, given [x, y] ∈ G ⊕ G′, if [x, y]pj exists, then it is a pair of Gqi ⊕ H,
and similarly for [x, y]pk . Conversely, if [i, w] ∈ Gqi ⊕H, then at least one of [i, w]p

−1
j and

[i, w]p
−1
k exists, since j 6= k, giving a pair [x, y] ∈ G⊕G′ with the required properties.

3.4 Lemma. If (j) or (k) is a cycle of qjq
−1
k , then |G⊕G′| 6= 4.

Proof . Suppose that (j) is a cycle of qjq
−1
k . We have jqjq−1

k = j, so that jqk = j. By
Lemma 1.6, [j, k] ∈ G if and only if [j, k] ∈ H. We also know that [j, k] ∈ G′ if and
only if [j, k]qk = [j, k] ∈ (G′)qk = Gqi . It then follows that [j, k] ∈ G ⊕ G′ if and only
if [j, k] ∈ Gqi ⊕ H, a contradiction to Lemma 1.4. Therefore [j, k] 6∈ G ⊕ G′, so that
|G⊕G′| 6= 4, by Lemma 3.2. The proof is similar if (k) is a cycle.

3.5 Theorem. |G⊕G′| = 4 is impossible.
Proof . Suppose that |G ⊕ G′| = 4. By the preceding lemmas, we have G ⊕ G′ =
{[j, k], [j, iq

−1
k ], [k, iq

−1
j ], [iq

−1
j , iq

−1
k ]}. We also know that (j) and (k) are not cycles of qjq

−1
k .

Therefore kpjp−1
k exists, whether qjq

−1
k is of type 1 or 2. Consider the pair [k, iq

−1
j ] ∈ G⊕G′.

Without loss of generality, we can assume that [k, iq
−1
j ] ∈ G′−G (by considering G instead

of G, if necessary). Apply pjp
−1
k to get [kqjq−1

k , iq
−1
k ] ∈ G′ −G, since qjq

−1
k is an automor-

phism of G′, and pjp
−1
k is a partial automorphism of G. Comparing [kqjq−1

k , iq
−1
k ] with the

four pairs of G⊕G′, we conclude that either kqjq−1
k = j or iq

−1
j .
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Suppose first that kqjq−1
k = iq

−1
j . We have two pairs, [k, iq

−1
j ], [iq

−1
j , iq

−1
k ] ∈ G′ − G.

The remaining two pairs of G ⊕ G′ are [j, k], [j, iq
−1
k ] ∈ G − G′. We now apply pkp−1

j to

[j, iq
−1
k ] to obtain [jpkp−1

j , iq
−1
j ]. Now this pair must exist, since (j) and (k) are not cycles

of qjq
−1
k . Therefore it is a third pair of G−G′, which is impossible.

Consequently, we must have kqjq−1
k = j. It follows that qjq

−1
k is of type 1. We have

two pairs, [k, iq
−1
j ], [j, iq

−1
k ] ∈ G′ − G. Therefore [j, k], [iq

−1
j , iq

−1
k ] ∈ G − G′. Apply pjp

−1
k

and pkp−1
j to [iq

−1
j , iq

−1
k ], to get [iq

−1
k , iq

−1
k

pjp−1
k ] and [iq

−1
j , iq

−1
j

pkp−1
j ]. We must consider

whether these pairs exist or not.
Suppose first that [iq

−1
k , iq

−1
k

pjp−1
k ] and [iq

−1
j , iq

−1
j

pkp−1
j ] do not exist. Then by Lemma1.2,

iq
−1
k = j or kp−1

j and iq
−1
j = k or jp−1

k . As |{j, k, iq
−1
j , iq

−1
k }| = 4, we must have iq

−1
k = kq−1

j

and iq
−1
j = jq−1

k . This is illustrated in Figure 7. We find that the cycle of qjq
−1
k containing

j and k has exactly 4 vertices.

Figure 7, |G⊕G′| = 4, [iq
−1
k , iq

−1
k

pjp−1
k ] does not exist

We now calculate Gqi ⊕H, using Lemma 3.3, by applying pj and pk to pairs of G⊕G′.
The result is Gqi⊕H = {[i, jqk ], [i, j], [i, k]}, since jqk = kqj . This is impossible, as |Gqi⊕H|
must be even.

There remains the situation when [iq
−1
k , iq

−1
k

pjp−1
k ] or [iq

−1
j , iq

−1
j

pkp−1
j ] exists. Sup-

pose that [iq
−1
k , iq

−1
k

pjp−1
k ] exists. As this pair must be in G − G′, we conclude that

[iq
−1
k , iq

−1
k

pjp−1
k ] = [iq

−1
j , iq

−1
k ]. It follows that (iq

−1
k )qjq−1

k = iq
−1
j , or equivalently, i(q

−1
k

qj)
2
= i.

This situation is illustrated in Figure 8.

Figure 8, |G⊕G′| = 4, [iq
−1
k , iq

−1
k

pjp−1
k ] = [iq

−1
j , iq

−1
k ]

Let C denote the cycle of qjq
−1
k containing j and k. Since qjq

−1
k ∈ aut(G′), the

vertices of C all have the same degree in G′, call it α. The cycle of qjq
−1
k containing

11



iq
−1
j is (iq

−1
j , iq

−1
k ). Let β denote the degree of iq

−1
j and iq

−1
k in G′. Now G′ − G =

{[k, iq
−1
j ], [j, iq

−1
k ]} and G−G′ = {[j, k], [iq

−1
j , iq

−1
k ]}, ie, G is formed from G′ by removing

the edges [k, iq
−1
j ], [j, iq

−1
k ] and adding the edges [j, k], [iq

−1
j , iq

−1
k ]. These pairs are indicated

in the diagram. Consequently, all vertices of C also have degree α in G; and iq
−1
j , iq

−1
k both

have degree β in G. It follows that deg(v,G) = deg(v,G′), for all v ∈ V . But G′ = Gqiq
−1
j ,

so that deg(v,G) = deg(vqiq
−1
j , Gqiq

−1
j ) = deg(vqiq

−1
j , G′) = deg(vqiq

−1
j , G), ie, v and vqiq

−1
j

have the same degree in G, for all v ∈ V .
We show that α = β. Consider the pair-orbit Ω(iq

−1
j , iq

−1
k ) with respect to qiq

−1
j .

It consists of a cyclic sequence of pairs (P0, P1, . . . , Pm), where P0 = [iq
−1
j , iq

−1
k ], and

P`+1 = P
qiq

−1
j

` , where ` = 0, 1, 2, . . . ,m, and addition of subscripts is reduced modulo
m + 1. As G′ = Gqiq

−1
j , we conclude that P` ∈ G if and only if P`+1 ∈ G′. Now

P0 ∈ G − G′. Therefore Pm 6∈ G. Hence, there is some ` ∈ {0, 1, . . . ,m − 1}, such that
P` ∈ G but P`+1 6∈ G. Then P`+1 ∈ G′ − G. It follows that P`+1 is either [k, iq

−1
j ] or

[j, iq
−1
k ]. Now deg(iq

−1
j , G) = deg(iq

−1
k , G) = β. As deg(v,G) = deg(vqiq

−1
j , G), we conclude

that α = deg(j, G) = deg(k,G) = deg(iq
−1
j , G) = deg(iq

−1
k , G) = β.

We now find H − Gqi = {[i, iq
−1
k

qj ]} and Gqi − H = {[i, kqj ]}, using Lemma 3.3.
Therefore, if v 6∈ {iq

−1
k

qj , kqj}, then deg(v,Gqi) = deg(v,H). In Gqi , the vertices of Cqi

all have degree α; furthermore i and iq
−1
k

qj have degree β, which equals α. Now H is
formed from Gqi by removing the edge [i, kqj ] and adding the edge [i, iq

−1
k

qj ]. Hence, in
H, the vertices of Cqi all have degree α, except for kqj , which has degree α − 1. Also,
deg(i,H) = α, but deg(iq

−1
k

qj ,H) = α + 1. But G and H must have the same degree
sequences, a contradiction.

This completes the proof that |G⊕G′| = 4 is impossible.

We now turn to the situation when |G ⊕ G′| = 2. There are 6 ways of choosing two
edges out of {[j, k], [j, iq

−1
k ], [k, iq

−1
j ], [iq

−1
j , iq

−1
k ]}. However, due to the symmetry between

j and k, some of these will be equivalent. We look at each case in turn.

3.6 Lemma. If |G⊕G′| = 2, then [j, k] 6∈ G⊕G′.
Proof . Suppose that [j, k] ∈ G−G′ and that some pair [x, y] ∈ G′ −G. Then since [j, k]pj

and [j, k]pk do not exist, we find that H − Gqi = Ø and that Gqi − H 6= Ø, which is
impossible. A similar result holds if [j, k] ∈ G′ −G and [x, y] ∈ G−G′.

3.7 Lemma. If G⊕G′ = {[j, iq
−1
k ], [iq

−1
j , iq

−1
k ]}, then Gqk = H.

Proof . Suppose that [j, iq
−1
k ] ∈ G−G′ and that [iq

−1
j , iq

−1
k ] ∈ G′ −G. Apply pj and pk to

obtain [i, jqk ] ∈ H−Gqi and [i, iq
−1
k

qj ], [i, iq
−1
j

qk ] ∈ Gqi−H. Since |H−Gqi | = |Gqi−H| = 1,
we conclude that iq

−1
k

qj = iq
−1
j

qk . It then follows that H ⊕ Gqi = (G ⊕ G′)qk . But this
equals Gqk ⊕Gqi . Cancelling Gqi leaves Gqk = H.

Interchanging j and k in the above lemma gives:
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3.8 Lemma. If G⊕G′ = {[k, iq
−1
j ], [iq

−1
j , iq

−1
k ]}, then Gqj = H.

There remains one case.

3.9 Theorem. G⊕G′ = {[j, iq
−1
k ], [k, iq

−1
j ]} is impossible.

Proof . Without loss of generality, suppose that [j, iq
−1
k ] ∈ G−G′ and that [k, iq

−1
j ] ∈ G′−G.

If [k, iq
−1
j ]pjp−1

k were to exist, it would also be a pair of G′ − G, as pjp
−1
k is a partial

automorphism of G and an automorphism of G′; that is, we would have [iq
−1
k , kqjq−1

k ] ∈
G′−G. This would make |G′−G| > 1, which is impossible. We conclude that [k, iq

−1
j ]pjp−1

k

does not exist. This implies that kpjp−1
k does not exist; hence kpj = k. Similarly, we find

jpk = j. This is illustrated in Figure 9, which shows the cycles (j) and (k) of qjq
−1
k , and

the cycle C containing iq
−1
j and iq

−1
k . It follows from Lemma 3.3 that H − Gqi = {[i, j]}

and Gqi −H = {[i, k]}.

Figure 9, G⊕G′ = {[j, iq
−1
k ], [k, iq

−1
j ]}

We show that G and H have different degree sequences, by observing that G and Gqj

have the same degree sequences, but that Gqj and H have different degree sequences. We
have G ⊕ G′ = {[j, iq

−1
k ], [k, iq

−1
j ]}, and Gqi ⊕ H = {[i, j], [i, k]}. If v 6∈ {j, k, iq

−1
k , iq

−1
j },

then deg(v,G) = deg(v,G′) so that deg(vqj , Gqj ) = deg(vqj , (G′)qj ) = deg(vqj , Gqi). Since
vqj 6∈ {i, j, k}, we have deg(v,G) = deg(vqj , Gqi) = deg(vqj ,H). Since jqj = j and kqj = k,
we also have deg(v,G) = deg(vqj ,H) when v ∈ {j, k}. We must still compare deg(v,G)
and deg(vqj ,H) when v ∈ {iq

−1
j , iq

−1
k }.

Now G′ − G = {[k, iq
−1
j ]}. Since qjq

−1
k ∈ aut(G′), it follows that in G′, k is ad-

jacent to every vertex of C. In G′, all vertices of C have a common degree, call it α.
Then deg(iq

−1
j , G′) = deg(iq

−1
k , G′) = α. Since G − G′ = {[j, iq

−1
k ]}, we conclude that

deg(iq
−1
j , G) = deg(iq

−1
j , G′) − 1 = α − 1, and that deg(iq

−1
k , G) = deg(iq

−1
k , G′) + 1 =

α + 1. Then deg(iq
−1
j , G) = α − 1 = deg(i, Gqi) − 1. Since Gqi ⊕ H = {[i, j], [i, k]},

we have deg(i, H) = deg(i, Gqi) = α. Similarly, deg(iq
−1
k , G) = α = deg(iq

−1
k

qj , Gqi) =
deg(iq

−1
k

qj ,H). Hence deg(iq
−1
k , G) = deg(iq

−1
k

qj ,H). We conclude that G and H have
different degree sequences, a contradiction.
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We summarise the preceding lemmas and theorems as the following:

3.10 Theorem. Let G and H be hypomorphic graphs. If Gqiq
−1
j = Gqiq

−1
k , where i, j,

and k are distinct, and |{j, k, iq
−1
j , iq

−1
k }| = 4, then H is equal to one of Gqi , Gqj , or Gqk .

We thus have an algebraic condition forcing the reconstructibility of G. We must still
deal with the case when |{j, k, iq

−1
j , iq

−1
k }| ≤ 3.

4. |{j, k, iq−1
j , iq−1

k }| ≤ 3

The possible cases are:

1. j = iq
−1
k (or symmetrically, k = iq

−1
j )

2. iq
−1
j = iq

−1
k

3. j = iq
−1
k and k = iq

−1
j

Case 1. j = iq
−1
k

In this section we assume that |{j, k, iq
−1
j , iq

−1
k }| = 3 and that j = iq

−1
k .

4.1 Lemma. G⊕G′ consists of pairs of the form [j, x] or [k, iq
−1
j ].

Proof . As in Lemma 3.2, we find that if [x, y] ∈ G⊕G′, then [x, y]pjp−1
i and [x, y]pkp−1

i do
not exist. Hence {x, y} ∩ {j, iq

−1
j } 6= Ø and {x, y} ∩ {k, iq

−1
k } 6= Ø. Since j = iq

−1
k , this

reduces to either j ∈ {x, y}, or [x, y] = [k, iq
−1
j ].

Notice that qjq
−1
k maps iq

−1
j to iq

−1
k = j so that qjq

−1
k does not fix the point j.

4.2 Lemma. Given [j, x] ∈ G ⊕ G′, for some x. If [j, x]pkp−1
j exists, then kqj 6= k and

G⊕G′ = {[j, k], [j, jq−1
k ], [k, iq

−1
j ], [j, kqjq−1

k ]}.
Proof . We have jqkq−1

j = iq
−1
j . Since pkp−1

j is both an automorphism of G′ and a partial

automorphism of G, we have [j, x]pkp−1
j = [iq

−1
j , xqkq−1

j ] ∈ G⊕G′. By Lemma 4.1, we find
that either xqkq−1

j = k or j. Now we can not have xqkq−1
j = j, because then x = jq−1

k , but
then xpkp−1

j does not exist, contrary to assumption. It follows that x = kqjq−1
k and that

kqj 6= k, since xpkp−1
j exists.

We have found that [j, kqjq−1
k ], [k, iq

−1
j ] ∈ G⊕G′, and that these pairs are either both

in G−G′, or both in G′−G. There must be at least two more pairs to balance these, and
they must be pairs [j, x], such that xpkp−1

j does not exist. The only possibilities are [j, k]
and [j, jq−1

k ]. This completes the proof.

Notice that it follows from Lemma 4.2 that G−G′ and G′−G are {[j, kqjq−1
k ], [k, iq

−1
j ]}

and {[j, k], [j, jq−1
k ]}. Let Cj denote the cycle of qjq

−1
k containing j, and Ck the cycle

containing k.
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4.3 Theorem. If G⊕G′ = {[j, k], [j, jq−1
k ], [k, iq

−1
j ], [j, kqjq−1

k ]} and kqj 6= k, then |Cj | = 2,
qjq

−1
k must be of type 2, and Gqi ⊕H = {[i, j], [i, kqj ]}.

Proof . Without loss of generality, let G − G′ = {[k, iq
−1
j ], [j, kqjq−1

k ]} and G′ − G =
{[j, k], [j, jq−1

k ]}. Apply pj and pk to obtain H−Gqi = {[i, kqj ]} and Gqi−H = {[i, j]}. The
case when qjq

−1
k is of type 1 is illustrated in Figure 10; type 2 is illustrated in Figure 11.

A dotted line indicates a pair that is known not to be an edge of G.

Figure 10, G⊕G′ = {[j, k], [j, jq−1
k ], [k, iq

−1
j ], [j, kqjq−1

k ]}, qjq
−1
k of type 1

Notice that k 6= iq
−1
j , by assumption. We also know that iq

−1
j 6= kqjq−1

k , for if these
two were equal, then qjq

−1
k would map [j, kqjq−1

k ] ∈ G − G′ to [j, jq−1
k ] ∈ G′ − G, which

is impossible, as qjq
−1
k ∈ aut(G′). We have j, iq

−1
j , jq−1

k ∈ Cj ; therefore these vertices all
have the same degree in G′, call it α. Similarly, k, kqjq−1

k ∈ Ck, so that these vertices also
have the same degree in G′, call it β. If qjq

−1
k is of type 1, then Cj = Ck and α = β.

Figure 11, G⊕G′ = {[j, k], [j, jq−1
k ], [k, iq

−1
j ], [j, kqjq−1

k ]}, qjq
−1
k of type 2

We show that if |Cj | ≥ 3, then G and H have different degree sequences. This is done
by observing that G and Gqk have the same degree sequence, and showing that Gqk and
H have different degree sequences. Suppose that |Cj | ≥ 3, so that j, jq−1

k , and iq
−1
j are

distinct vertices. Since G − G′ = {[k, iq
−1
j ], [j, kqjq−1

k ]} and G′ − G = {[j, k], [j, jq−1
k ]}, we
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have deg(j,G) = deg(jq−1
k , G) = α − 1 and deg(iq

−1
j , G) = α + 1. Any other vertices of

Cj have degree α in G. Similarly, deg(kqjq−1
k , G) = β + 1, whereas all other vertices of Ck

have degree β in G.
If v 6∈ {j, iq

−1
j , jq−1

k , kqjq−1
k }, then deg(v,G) = deg(v,G′) Hence deg(vqk , Gqk) =

deg(vqk , (G′)qk) = deg(vqk , Gqi). Since Gqi ⊕ H = {[i, j], [i, kqj ]}, we know that vqk 6∈
{i, j, kqj}, so that deg(v,G) = deg(vqk , Gqi) = deg(vqk ,H). The vertices of {j, iq

−1
j , jq−1

k ,

kqjq−1
k } have degrees {α− 1, α− 1, α, β + 1} in G. Since Gqi −H = {[i, j]} and H −Gqi =

{[i, kqj ]}, we have deg(jqk ,H) = deg(i, H) = α; deg(iq
−1
j

qk ,H) = α; deg(jq−1
k

qk ,H) =
deg(j, H) = α− 1; and deg(kqjq−1

k
qk ,H) = deg(kqj ,H) = β + 1. Thus, the degrees of vqk ,

when v ∈ {j, iq
−1
j , jq−1

k , kqjq−1
k }, are {α, α, α − 1, β + 1}. If |Cj | ≥ 3, this is not possible.

We conclude that |Cj | = 2, so that qjq
−1
k is of type 2.

We have been unable to prove that |Cj | = 2 is not possible in Theorem 4.3. We find
that iq

−1
j = jq−1

k , so that the degrees in G of v ∈ {j, iq
−1
j , kqjq−1

k } are the same as the degrees
in H of vqk .

Lemmas 4.2 and Theorem 4.3 handle the situation when there is a pair [j, x] ∈ G⊕G′

such that [j, x]pkp−1
j exists. We now consider the cases when [j, x]pkp−1

j does not exist, for
every [j, x] ∈ G ⊕ G′. Since jpkp−1

j = iq
−1
j , we conclude that xpkp−1

j does not exist. It
follows that either x = k or x = jq−1

k . The possible pairs for G⊕G′ are [j, k], [j, jq−1
k ], and

[k, iq
−1
j ]. G⊕G′ contains exactly two of these pairs.

4.4 Lemma. If [j, x]pkp−1
j does not exist, for any [j, x] ∈ G⊕G′, and [k, iq

−1
j ] ∈ G⊕G′,

then kqj = k.
Proof . If [k, iq

−1
j ]pjp−1

k were to exist, it would equal a pair of G⊕G′, since pjp
−1
k is a partial

automorphism of both G and G′. It would follow that [k, iq
−1
j ]pjp−1

k = [j, kqjq−1
k ] equals

either [j, k] or [j, jq−1
k ]. This implies that kqj = k.

4.5 Lemma. G⊕G′ = {[j, k], [j, jq−1
k ]} is impossible.

Proof . Calculating Gqi⊕H = {[j, jqk ]} gives a contradiction, since |Gqi⊕H| must be even.

4.6 Lemma. G⊕G′ = {[j, k], [k, iq
−1
j ]} is impossible.

Proof . Calculating Gqi ⊕ H = {[i, k]}, using Lemma 3.3, gives a contradiction, since
|Gqi ⊕H| must be even.

4.7 Lemma. If G⊕G′ = {[j, jq−1
k ], [k, iq

−1
j ]}, then Gqj = H.

Proof . Without loss of generality, assume that G − G′ = {[k, iq
−1
j ]} and that G′ − G =

{[j, jq−1
k ]}. By Lemma 4.4, kqj = k. Calculate H − Gqi = {[i, k]}, using Lemma 3.3, and

Gqi − H = {[j, jqk ]} = {[i, j]}, since jqk = i. Let Cj be the cycle of qjq
−1
k containing j,

as illustrated in Figure 12. In G′, all vertices of Cj have the same degree, call it α. Let
β = deg(k,G′). Suppose first that |Cj | ≥ 3, so that iq

−1
j 6= jq−1

k . Since G−G′ = {[k, iq
−1
j ]}
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and G′ − G = {[j, jq−1
k ]}, we have deg(j,G) = deg(jq−1

k , G) = α − 1; deg(iq
−1
j , G) =

α + 1; and deg(k, G) = β + 1. If v 6∈ {j, k, jq−1
k , iq

−1
j }, then deg(v,G) = deg(v,G′) so

that deg(vqk , Gqk) = deg(vqk , (G′)qk) = deg(vqk , Gqi). Since vqk 6∈ {i, j, k, iq
−1
j

qk}, and
since Gqi ⊕ H = {[i, k], [i, j]}, we conclude that deg(vqk , Gqk) = deg(vqk ,H). If v = k,
we also have deg(k, G) = β + 1 = deg(kqk ,H). The degrees of {j, jq−1

k , iq
−1
j } in G are

{α−1, α−1, α}. The degrees of vqk in H are {α−1, α, α}, so that G and H have different
degree sequences, a contradiction. We conclude that |Cj | = 2, so that iq

−1
j = jq−1

k , and
G′ −G = {[j, iq

−1
j ]}.

We then find that qj maps [k, iq
−1
j ] ∈ G−G′ to [i, k] ∈ H −Gqi , and [j, iq

−1
j ] ∈ G′−G

is mapped to [i, j] ∈ Gqi − H. Therefore (G ⊕ G′)qj = H ⊕ Gqi . Since (G′)qj = Gqi , it
follows that Gqj = H, as required.

Figure 12, G⊕G′ = {[j, jq−1
k ], [k, iq

−1
j ]}

Case 2. iq
−1
j = iq

−1
k

In this section we assume that |{j, k, iq
−1
j , iq

−1
k }| = 3 and that iq

−1
j = iq

−1
k . Notice that

iq
−1
j is a fixed point of qjq

−1
k .

4.8 Lemma. G⊕G′ consists of pairs of the forms [iq
−1
j , x] or [j, k].

Proof . As in Lemma 3.3, we find that if [x, y] ∈ G⊕G′, then [x, y]pjp−1
i and [x, y]pkp−1

i do
not exist. Hence {x, y} ∩ {j, iq

−1
j } 6= Ø and {x, y} ∩ {k, iq

−1
k } 6= Ø. Since iq

−1
j = iq

−1
k , this

reduces to either iq
−1
j ∈ {x, y}, or [x, y] = [j, k].

4.9 Theorem. If iq
−1
j = iq

−1
k , and qjq

−1
k is of type 2, then Gqj = H.

Proof . Let X be the set of vertices x such that [iq
−1
j , x] ∈ G⊕G′. Let [iq

−1
j , X] denote the

set of all pairs [iq
−1
j , x] such that x ∈ X. By Lemma 4.8, (G⊕G′)− [j, k] = [iq

−1
j , X]. Given

x ∈ X, if xpjp−1
k exists, then xpjp−1

k ∈ X, since pjp
−1
k is a partial automorphism of G and

G′. If xpjp−1
k does not exist, then since qjq

−1
k is of type 2, we can apply pkp−1

j a number of

times to obtain xpjp−1
k ∈ X. Thus Xqjq−1

k = X. By Lemma 3.3, H ⊕Gqi = [i, Xqj ], since
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Xqj = Xqk . Since |G ⊕ G′| and |H ⊕ Gqi | are even we conclude that G ⊕ G′ = [iq
−1
j , X],

so that (G⊕G′)qj = Gqj ⊕Gqi = [i, Xqj ] = Gqi ⊕H so that Gqj = H.

4.10 Theorem. If iq
−1
j = iq

−1
k , and qjq

−1
k is of type 1, then either G ∼= H or else

Gqj ⊕H = {[i, j], [j, kqj ]}
Proof . Let C denote the cycle of qjq

−1
k containing j and k. Refer to Figure 13. As in

Theorem 4.9, let X denote the set of vertices x such that [iq
−1
j , x] ∈ G⊕G′. By Lemma 4.8,

(G ⊕ G′) − [j, k] = [iq
−1
j , X]. Let X ′ = X − C. Then (X ′)qjq−1

k = X ′, since pjp
−1
k is a

partial automorphism of both G and G′, and C is a cycle of qjq
−1
k . If Xqjq−1

k = X, we
again have Gqj = H, as in Theorem 4.9. We divide the cycle C into two subsets: P1, the
vertices on the path from k to j; and P2, the vertices on the path from jq−1

k to kq−1
j . Then

P1∪P2 = C. If x ∈ X ∩P`, where ` = 1 or 2, then we can apply either pjp
−1
k or its inverse

to x as many times as needed to obtain P` ⊆ X. Consequently we can assume that X ∩C
is either P1 or P2.

Suppose first that X∩C = P1. By Lemma 3.3, Gqi⊕H = [i, (X−j)pj ]∪ [i, (X−k)pk ].
Let m = |P1|. Then |Gqi ⊕ H| = |X ′| + m − 1, whereas |[iq

−1
j , X]| = |X ′| + m. Since

|Gqi ⊕ H| and |G ⊕ G′| are both even, we conclude that [j, k] ∈ G ⊕ G′. We then have
(G⊕G′)qj = Gqj ⊕Gqi = [iq

−1
j , X]qj ∪{[j, k]qj} = [i, Xqj ]∪{[j, kqj ]}. Comparing this with

the expression for Gqi ⊕H gives Gqj ⊕H = {[i, j], [j, kqj ]}.

Figure 13, iq
−1
j = iq

−1
k

Suppose now that X∩C = P2. Let ` = |P2|. We find that Gqi⊕H = [i,Xpj ]∪[i, Xpk ],
since j, k 6∈ X. Therefore |Gqi ⊕H| = |X ′|+ `+1, whereas |[iq

−1
j , X]| = |X ′|+ `. It follows

that [j, k] ∈ G⊕G′. As above, we obtain Gqj ⊕H = {[i, j], [j, kqj ]}.

We have been unable to prove that Gqj = H in this case. If we attempt to use the
degree sequence as in Theorem 3.5, we can proceed as follows. Consider the case when
X∩C = P1, and assume that [iq

−1
j , P1] ⊆ G−G′. Then [iq

−1
j , j] ∈ G−G′ so that [i, j] ∈ Gqj .

Since Gqj ⊕H = {[i, j], [j, kqj ]}, we have [i, j] ∈ Gqj −H and [j, kqj ] ∈ H −Gqj . Therefore
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[j, k] ∈ G′ − G. Let m1 = |(G′ − G) ∩ [iq
−1
j , X ′]| and m2 = |(G − G′) ∩ [iq

−1
j , X ′]|. Then

|G′ −G| = m1 + 1 and |G−G′| = m + m2, so that m1 + 1 = m + m2.
In G′, the vertices of C all have the same degree, call it α. Let β = deg(iq

−1
j , G′).

Then deg(iq
−1
j , G) = β+m+m2−m1 = β+1. Also, deg(j, G) = deg(k, G) = α. The other

vertices of P1 have degree α + 1 in G. We use Gqj −H = {[i, j]} and H −Gqj = {[j, kqj ]}
to obtain the degrees in H. We have β + 1 = deg(iq

−1
j , G) = deg(i, Gqj ) = deg(i, H) + 1,

so that deg(i,H) = β. Also, α = deg(k, G) = deg(kqj , Gqj ) = deg(kqj ,H) − 1, so that
deg(kqj ,H) = α + 1. If v 6∈ {i, kqj}, then deg(v,Gqj ) = deg(v,H). The only conclusion
drawn is that α = β.

Case 3. j = iq
−1
k and k = iq

−1
j

In this section we assume that |{j, k, iq
−1
j , iq

−1
k }| = 2 and that j = iq

−1
k and k = iq

−1
j .

These conditions weaken the implications of the relation Gqiq
−1
j = Gqiq

−1
k , and do not seem

sufficient to settle this case. We have only the following simple lemma and observations.

4.11 Lemma. G⊕G′ consists of pairs of the forms [j, x] or [k, x].
Proof . As in Lemma 3.3, we find that if [x, y] ∈ G ⊕ G′, then [x, y]pjp−1

i and [x, y]pkp−1
i

do not exist. Hence {x, y} ∩ {j, iq
−1
j } 6= Ø and {x, y} ∩ {k, iq

−1
k } 6= Ø. Since iq

−1
j = k and

iq
−1
k = j, this reduces to either j ∈ {x, y}, or k ∈ {x, y}.

Notice that kqjq−1
k = (iq

−1
j )qjq−1

k = iq
−1
k = j. Therefore qjq

−1
k is of type 1. Suppose

that [k, x] ∈ G ⊕ G′, for some x. If [k, x]pjp−1
k exists, then [j, xqjq−1

k ] is also in G ⊕ G′,
since pjp

−1
k is a partial automorphism of G, and an automorphism of G′. If it does not

exist, then x is either j or kq−1
j . Thus, the possible difference pairs are [k, kq−1

j ], [j, k], and
[j, jq−1

k ] (by symmetry); and pairs of the form [k, x], [j, xqjq−1
k ].

5. Conclusion

The algebraic relations Gqiq
−1
j = Gqjq−1

i or Gqiq
−1
j = Gqiq

−1
k are sufficient to force the

reconstructibility of G in many cases. The second relation implies that one of Gqi , Gqj ,
or Gqk always equals H when |{j, k, iq

−1
j , iq

−1
k }| = 4. When |{j, k, iq

−1
j , iq

−1
k }| = 3, the

results are less conclusive; Gqj and H can sometimes differ in up to two edges, that is
|Gqj ⊕H| ≤ 2. When |{j, k, iq

−1
j , iq

−1
k }| = 2, the conditions are not strong enough to force

G ∼= H. Other algebraic relations for which similar results likely hold are Gqiq
−1
j = Gqkq−1

i

and Gqiq
−1
j = Gqkq−1

` , where i, j, k and ` are distinct.
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