
Revised July, 1995

This paper appeared in

J. of Comb. Maths. and Comb. Computing 19 (1995), pp 171-191.

Some Algorithms for the
Computer Display of Geometric Constructions

in the Real Projective Plane

William Kocay* and Don Tiessen
Computer Science Department

University of Manitoba
Winnipeg, Manitoba, CANADA, R3T 2N2

e-mail: bkocay@cs.umanitoba.ca

Abstract

Several algorithms for geometric constructions on the real projective
plane are described. These methods also apply to euclidean plane geometry.
The concept of an augmented determining set is fundamental to the algo-
rithms. A backtracking algorithm to find augmented determining sets is de-
scribed. Algorithms for animating constructions, and an incidence-forcing
algorithm are also presented. These algorithms have been implemented on
an X-Windows system.

1. Determining Sets

We will be working with synthetic constructions in the real projective plane.
Since the real affine plane is a subset of the projective plane, the results will
also hold for constructions in the euclidean plane. We refer the reader to
the books by Coxeter [2] and Pedoe [4] as references for synthetic projective
geometry. Consider the geometric construction of Figure 1. It contains a
line ` with four points A, B, C, and D. If A, B, and C are chosen arbitrarily
on `, then the diagram gives the construction for finding the harmonic
conjugate D of point C with respect to A and B.

* This work was supported by an operating grant from the Natural Sciences and Engi-

neering Research Council of Canada.

1

A
l

CBD

R

S

Q

P

Figure 1 Harmonic conjugates

Suppose that this drawing has been constructed on a computer screen. The
user now selects a point P , say, with the intention of moving it slightly. This
means that the lines through P must move with P and consequently the
points Q,R, and S must also move slightly. All point-line incidences in
the construction are to be maintained while P moves. However, no matter
where P is moved to, we can require that A and B remain fixed. C and D
will then move in harmonic ratio with respect to each other, since they are
harmonic conjugates relative to A and B, and this is independent of the
particular point P used to construct them.

In this paper algorithms are presented which allow any point or line of
such constructions to be moved, thereby animating the entire configuration.
Current geometry software does not seem to support this kind of general
movement. The algorithms have been implemented on an X-Windows sys-
tem, and are found to work well.

In general, any construction in the projective plane can be represented
by an ordered pair (Σ, Π), where Σ is a set of points and lines and Π is
the set of incidences between them. We will refer to a pair (Σ,Π) as a
geometric configuration . For example, a triangle with points A, B, C and
lines a, b, c can be represented by the pair ({A, B, C, a, b, c}, {Ab, Ac,Ba,
Bc, Ca, Cb}). This representation is abstract in the sense that no drawing
of the configuration need be given. If we do want to draw the construction,
we need to assign positions to the lines and points. The positions must
be assigned so that the incidences in Π are maintained. If we know the
position of points A, B, and P in Figure 1, this determines the lines of

2

the triangle ABP . If we also know the position of S, this determines the
lines through S, which in turn determines the points Q,R, and D, which
in turn determines the line QR, which then determines C. This illustrates
the concept of determined objects.

Notice that a configuration (Σ, Π) can be viewed as a bipartite in-
cidence graph of points versus lines. However not every bipartite graph
corresponds to a geometric configuration.

1.1 Definition. Let (Σ, Π) be a geometric configuration, S ⊆ Σ be a set
of points and lines. Let S0 = S. For each i ≥ 1, we define

Si = Si−1 ∪ {P | P is incident with exactly 2 lines of Si−1}
∪ {` | ` is incident with exactly 2 points of Si−1}

Let S∗ = Sj , where j = min{i | Si = Si+1}. All objects o ∈ S∗ are said
to be determined by S. The rank of an object o ∈ S∗ with respect to S
is r(o) = min{i | o ∈ Si}. If an object has rank i, then it is said to be
determined by Si−1.

1.2 Definition. Given a configuration (Σ, Π), a determining set for this
construction, denoted by ∆(Σ, Π), is defined as a minimal subset of Σ that
determines all of the objects in Σ, such that no two objects of the same rank
are incident ; that is, ∆(Σ, Π) determines all of Σ, but no proper subset of
∆ does.

Thus if the positions of the points and lines in ∆ are known, then the
positions of all objects in Σ are known. Some configurations do not have
determining sets. We shall come back to this point later. Note the restric-
tion that no two objects of the same rank be incident. This is to prevent
the situation where two independently determined objects are required to
be incident, which in general may not be possible.

In the construction of Figure 1, we can take ∆ = {A, B, P,S}. These
objects have rank 0. These four points determine six lines, which all have
rank 1. The intersections of these six lines determine the points Q, R, and
D, which have rank 2. The line QR is then determined with rank 3. Finally
the point C is determined, with rank 4. Notice that the lines QD, RD,PC ,
etc., could also be drawn, but they are not part of the configuration (Σ,Π).

This example illustrates an important point of the definition. An ob-
ject o of rank i is determined by exactly two objects of rank i − 1. These
objects are called its antecedents and are denoted by a1(o) and a2(o). Since
the incidence graph is bipartite, a point is determined by two lines, and a
line is determined by two points.

1.3 Lemma. Given a determining set ∆(Σ,Π), we can arbitrarily assign
the positions of the objects in ∆. The positions of all remaining objects of
Σ are then uniquely determined.

3

Proof . Assign the positions of the objects of ∆ arbitrarily. These are the
objects of rank 0. There are no incidences among them. The objects of rank
1 are each determined by exactly two objects of rank 0. Therefore their
positions are uniquely determined. Then the objects of rank 2 are assigned
positions, and so on, until all objects of Σ have been assigned positions.

Thus if we move point P in the configuration of Figure 1, and require
that A, B, and S remain fixed, then the positions of these four points are
completely known. We can then compute the positions of all remaining
objects in the configuration, and update the diagram in real time, as point
P is moved.

Homogeneous Coordinates

We assume that the positions of points and lines are stored as homoge-
neous coordinates in the real projective plane. Positions of points will be
represented by triples (x, y, z). Positions of lines will also be represented by
triples [x, y, z]. The coordinates will be stored as floating point numbers.
Point P = (Px, Py, Pz) and line m = [mx, my,mz] are incident if and only
if P · m = 0. If P = (Px, Py, Pz) and Q = (Qx,Qy, Qz) are two points,
then the line ` = PQ can be computed as the cross product P × Q of the
coordinate vectors. Similarly the intersection of two lines m = [mx,my ,mz]
and n = [nx, ny, nz] can be computed as the cross product m × n of the
coordinate vectors. We shall denote an object and its homogeneous coor-
dinate vector by the same symbol. Thus if ` and m are two lines, and P
is their point of intersection, we shall write P = ` × m. The cross product
operation tends to produce very large coordinates after a while. There-
fore from time to time it is necessary to renormalize them by dividing by
some non-zero value α. This is permissible, since the homogeneous coor-
dinates (x/α, y/α, z/α) and (x, y, z) represent the same object. It is often
convenient to take α = max{|x|, |y|, |z|}.

In order to display a configuration on the computer screen, we have to
map the homogeneous coordinates to euclidean plane coordinates. There
are several ways of doing this. We can select any coordinate, say the z-
coordinate. Given a point P = (x, y, z), if z is non-zero we divide by
z to produce the cartesian coordinates (x/z, y/z). This is equivalent to
normalizing (x, y, z) to make the third coordinate 1. If z = 0, then (x, y, z)
is a point at infinity, and we cannot draw it in the xy-plane. Since we
are using floating point numbers, we have to replace the condition z = 0
with an inequality |z| < ε, where ε is a suitable small constant. A line
` = [a, b, c] is mapped to the equation ax + by + c = 0 in the cartesian
plane, since P · ` = 0 and we have normalized z to 1. We can obtain
different views of the same configuration by using a different coordinate for
normalization. Normalizing on the first or second coordinates will produce

4

different screen drawings of the same configuration. Different points will
appear to be at infinity. We can also implement zooming by normalizing
a coordinate to some other value than 1. Panning across the projective
plane can also be implemented by a suitable linear transformation of the
homogeneous coordinates. We can even pan all the way to points at infinity.
Thus points at infinity are no different from other points. Any point can
be considered as a point at infinity.

Suppose that an object o′ in a configuration (Σ, Π) is to be moved.
Once a determining set ∆ has been constructed such that o′ ∈ ∆, we can
animate the diagram. We store the objects of Σ on a queue Q according
to their rank. Q is an array of length n = |Σ|. For each object o = Q[i]
(i = 1, . . . , n), we execute the following steps.

• If o ∈ ∆, then either o = o′, in which case the position of o is
determined by the movement applied; or else o 6= o′, in which case
the position of o is unchanged.

• If o 6∈ ∆, then o has two antecedents a1(o) and a2(o) also on the
queue. The new coordinates of o are defined as o = a1(o)× a2(o).

General Position

Consider a determining set ∆(Σ, Π). If A, B, C ∈ ∆, then A, B, and C
cannot be collinear on a line `, since ` would be incident with three objects
of ∆, which contradicts the definition of determined. Similarly no three
lines `, m,n ∈ ∆ can be concurrent. It is common to say that a set of
points in the plane is in general position if no three of them are collinear.
Similarly, a set of lines in the plane is in general position if no three of them
are concurrent. The concept of a determining set is a generalization of the
notion of general position. The difference is that general position refers to
the positions of only lines or only points. There is one further difference,
as indicated by the following definition.

1.4 Definition. Consider a configuration (Σ, Π). A set of points P1, P2,
. . . , Pn ∈ Σ is collinear with respect to (Σ, Π) if there is a line ` ∈ Σ with
incidences P1`, P2`, . . . , Pn`. Notice that points which are collinear in the
plane need not be collinear with respect to (Σ, Π). Similarly a set of lines
`1, `2, . . . , `n ∈ Σ is concurrent with respect to (Σ, Π) if there is a point
P ∈ Σ with incidences P`1, P `2, . . . , P `n. Lines which are concurrent in
the plane need not be concurrent with respect to (Σ, Π).

Determining Sets and Incidence Graphs

Given a configuration (Σ, Π), let G(Σ, Π) denote its incidence graph. Σ is
the vertex set of G and Π is the edge set. Let ∆ be a determining set. The
nodes of G can be partitioned according to their rank. There are no edges

5

connecting two objects of the same rank; therefore every edge connects
two objects of different rank. The incidence graph of Figure 1 is shown in
Figure 2 with the rank of each object indicated.

l

C
D

A B

R

S

Q

P (0)

(0)

(0) (0)

(1) (1)

(1) (1)

(1) (1)

(2) (2)(2)

(4)

(3)

Figure 2 Incidence graph of harmonic conjugates

1.5 Proposition. Given a determining set ∆(Σ,Π), the incidence graph
G(Σ, Π) has an even number of edges. Let E be the number of edges of G,
let n = |Σ| and k = |∆|. Then k = n− E/2.
Proof . Each object of rank i ≥ 1 is adjacent to exactly two objects of rank
less than i. This accounts for all edges of G. Since the k objects of ∆ have
rank zero, it follows that E = 2(n − k), as required.

1.6 Corollary. All determining sets of (Σ, Π) have the same cardinality .

The number of objects in a determining set ∆(Σ, Π) is called the dimension
of (Σ, Π). The harmonic conjugates configuration of Figure 1 has dimension
4. In general, if G does not have an even number of edges then a determining
set does not exist. As we shall see later, an even number of edges is not a
sufficient condition for a determining set to exist.

An Algorithm to Find Determining Sets

The algorithm that we have used to find determining sets is an exhaustive
backtrack search. Assume that there are n objects in the configuration,
and that the objects are numbered 1,2, . . . , n. We use two queues, Q1 and
Q2, stored as arrays (1 . . . n). Q2 contains the determined objects, that
is, it contains the elements of the determining set, as well as all objects
incident with exactly two previously determined objects. When an unde-
termined object o is found to be incident with a determined object, o is
placed on Q1. When an object o ∈ Q1 is found to be incident with an-
other determined object, o thereby becomes determined; so it is placed on
Q2, as well. Thus Q1 contains all objects incident with one or two previ-
ously determined objects. We have two procedures, DetermineObjects and
FindDetSet. DetermineObjects(Q2) is called after a new object o has been

6

placed on Q2. It performs a breadth-first search of the incidence graph,
beginning at o, finding all objects incident with o, and placing them on
Q1 and/or Q2, until no new determinined objects can be found. If at any
point it finds an object incident with three previously determined objects,
it returns false. Otherwise it returns true to indicate success. Determi-
neObjects is a straightforward breadth-first search, and we do not show its
pseudo-code. FindDetSet(o) is shown below. It places object o on Q2 and
then calls itself recursively for each object o′ > o until either a determining
set is found, or until all possibilities have been exhausted. We assume that
the objects have been numbered 1 . . . n in some (arbitrary) order.

FindDetSet(o: object): boolean
{ extend the current determining set to include object o }
{ returns true if a determining set is found }
begin

save the current sizes of Q1 and Q2
add o to Q2
if DetermineObjects(Q2) then begin

if Q2 contains all n objects then return(true)
for o′ := o + 1 to n do if o′ 6∈ Q1 then

{ try to add o′ to the determining set }
if FindDetSet(o′) then return(true)

end
{ either DetermineObjects returned false or else all o′ were tried }
restore Q1 and Q2
return(false)

end { FindDetSet }

When the algorithm terminates, the objects of Q2−Q1 form a determining
set ∆, if one exists. For each o ∈ Q2 − ∆, the two antecedents a1(o) and
a2(o) are also found. They are stored by the procedure DetermineObjects.
We save these antecedents and the queue Q2. When one of the objects in
∆ is moved, the diagram can be animated by scanning Q2 from head to
tail and computing the new coordinates of each object from its antecedents.
This takes a constant number of steps per object. If there are n objects in
total, then O(n) steps are required to update the diagram when a point or
line is moved. When an object o is to be moved we require a determining
set ∆ containing o. In order to find ∆, we initialize the queue Q2 to contain
o before calling FindDetSet. This requires a small change in the code.

2. Augmented Determining Sets

Figure 3 shows a construction consisting of two triangles ABC and A′B′C ′

in perspective from a point P. (The dotted line ` is not part of the configura-

7

tion.) By Proposition 1.5, this configuration has no determining set, since
its incidence graph has 21 edges. We introduce augmented determining
sets in order to deal with such configurations. Augmented determining sets
are similar to determining sets, except that they can contain constrained
objects.

2.1 Definition. Let (Σ, Π) and (Σ′, Π′) be configurations where Σ′ ⊆ Σ
and Π′ ⊆ Π. (Σ′, Π′) is an induced configuration if, whenever there is an
incidence `P ∈ Π, where `, P ∈ Σ′, then `P ∈ Π′. This means that the
incidence graph of (Σ′, Π′) is an induced subgraph of the incidence graph
of (Σ, Π).

A

l

C

B

P
A′

Q

S

R

C ′

B ′

Figure 3 Two triangles in perspective

Now let (Σ,Π) be a configuration that has no determining set. FindDetSet
will construct sets S ⊆ Σ such that S is a determining set for some induced
configuration (Σ′, Π′). Although S does not determine the entire construc-
tion, it determines S∗ = Σ′. Let o be an object of Σ−S∗ which is incident
with exactly one object m ∈ S∗, if there is such an o. The object o is said
to be constrained by m. We now add o to S∗ and compute (S∗ ∪ {o})∗,
which will determine more of Σ. We modify FindDetSet by placing the fol-
lowing for-loop immediately before the final return(false) statement. This
loop saves the current size of Q1, which contains all constrained objects,
in a global variable Q1Size, and then tries to add each constrained object
o ∈ Q1 to Q2.

Q1Size := |Q1| { save current size of Q1 }
for k := 1 to Q1Size do begin

o := Q1[k] { kth object on Q1 }
if o 6∈ Q2 then if AugDetSet(o) then return(true)

end

This calls a procedure AugDetSet(o), which adds the constrained object o

8

to Q2 and tries to extend Q2 with constrained objects up to Q1[Q1Size]
until every object is determined.

AugDetSet(o: object): boolean
{ add the constrained object o to the determining set }
{ returns true if an augmented determining set is found }
begin

save the current sizes of Q1 and Q2
k := position of o on Q1
add o to Q2
if DetermineObjects(Q2) then begin

if Q2 contains all n objects then return(true)
for k := k + 1 to Q1Size do begin

o′ := Q1[k] { kth object on Q1 }
if o′ 6∈ Q2 then if AugDetSet(o′) then return(true)

end
end
{ either DetermineObjects returned false or else all o′ were tried }
restore Q1 and Q2
return(false)

end { AugDetSet }

If the algorithm is successful, it will terminate with all n objects on Q2. Q2
will contain a set ∆0 of undetermined objects and a set ∆1 of constrained
objects for which (∆∗

0 ∪ ∆1)
∗ = Σ. Each constrained object o ∈ ∆1 is

incident with exactly one object of ∆∗
0. We call ∆+ = (∆0,∆1) an aug-

mented determining set . This algorithm suggests the following definition
of augmented determining set.

2.2 Definition. An augmented determining set ∆+ for a configuration
(Σ, Π) consists of a set ∆0 and a set ∆1 such that:

i) ∆0 is a determining set for an induced configuration (Σ′, Π′);
ii) (∆∗

0 ∪ ∆1)
∗ = Σ;

iii) each o ∈ ∆1 is incident with exactly one object in Σ′;
iv) ∆1 is a minimal set with properties (ii) and (iii).

It is easy to verify that the algorithm computes sets ∆0 and ∆1 with these
properties, and that, if there are sets ∆0 and ∆1 with these properties,
that the algorithm will find them. Property (ii) is to ensure that all of Σ is
determined. Property (iv) is to ensure that no o ∈ ∆1 is determined by the
remaining objects of ∆0 and ∆1. Property (iii) could seemingly be relaxed
to say that each o ∈ ∆1 is incident with at most one object in Σ′, so as
to allow objects which only later become constrained to be used as part of
∆1. However there is no advantage in doing this, since objects which only

9

later become constrained could have been placed in ∆0 instead. Since the
algorithm first builds ∆0 before considering constrained objects, we are free
to require property (iii).

The incidence graph of the construction of Figure 3 containing two
triangles in perspective from a point is shown in Figure 4, together with an
augmented determining set ∆+ = (∆0, ∆1). The nodes of ∆0 are shaded
black, and those of ∆1 are shaded grey. Many configurations which do not
have determining sets do have augmented determining sets. We call the
elements of ∆0 free objects, and those of ∆1 constrained objects.

A ′

S

R

C ′

A

C B

P Q

B ′

Figure 4 Incidence graph of two triangles in perspective

2.3 Proposition. Let ∆+ = (∆0,∆1) be an augmented determining set
for a configuration (Σ, Π). Let k = |∆0| be the number of free objects and
c = |∆1| the number of constrained objects. Then 2k + c = 2n − E, where
n = |Σ| and E = |Π|.
Proof . Each object o ∈ Σ−∆0−∆1 has exactly two antecedents. There are
n−k−c such objects. Each constrained object has exactly one antecedent.
There are c constrained objects. Therefore E = 2(n−k−c)+c = 2n−2k−c.

We extend the definition of dimension to configurations with an aug-
mented determining set to be dim(Σ, Π) = k + c/2 = n − E/2. Thus the
construction of Figure 3 has dimension 31

2 . Any determining set can be
viewed as an augmented determining set with ∆1 = Ø. Thus the set of
augmented determining sets for a given configuration contains the set of its
determining sets. A configuration may have both augmented determining
sets and determining sets. The dimension will be the same in both cases:

2.4 Corollary. The dimension of a configuration is independent of the
determining set or augmented determining set chosen.
Proof . n − E/2 is a configuration invariant.

2.5 Lemma. If E ≥ 2n − 4 and n ≥ 4, then (Σ, Π) does not have an
augmented determining set or determining set .
Proof . E ≥ 2n− 4 implies that the dimension k + c/2 ≤ 2. A dimension of
0 is impossible. A dimension of 1 is only possible if n = 1. A dimension of
11

2 or 2 is only possible if n ≤ 3.

10

2.6 Lemma. If every object o ∈ Σ is incident with at least three other
objects, then (Σ, Π) does not have an augmented determining set or deter-
mining set .

Proof . Suppose that an augmented determining set existed. Consider the
queue Q2. The last object on the queue would be incident with at least three
objects also on Q2, all of which are already determined. This contradicts
the definition of determined .

We say that a (p, q)-configuration is a configuration in which each
point is incident with exactly p lines and each line is incident with exactly
q points. An np-configuration is a (p, p)-configuration with n points and n
lines. For example the configurations of Desargues’ and Pappus’s theorems
are both (3,3)-configurations. Desargues’ configuration is formed by adding
the dashed line ` to Figure 3. Pappus’s configuration is the diagram on the
left in Figure 5. It is a 93-configuration. There are 2 other 93-configurations,
which we call non-Pappus-1 and non-Pappus-2, also shown in Figure 5.
These configurations do not have augmented determining sets, by Lemma
2.6. In the next section we shall see how we can get around this problem.

Figure 5 The Pappus, non-Pappus-1, and non-Pappus-2 configurations

Lemmas 2.5 and 2.6 say that configurations with sufficiently many in-
cidences do not have augmenting determining sets. This is not surprising
when we consider what such configurations represent. The book [1] by
Bokowski and Sturmfels is devoted to the problem of finding certain coor-
dinatizations in the plane for various configurations. Not all configurations
can be drawn in the real projective plane. For example, the Fano config-
uration, a 73-configuration, cannot be coordinatized in the real projective
plane. There are three 93-configurations, as shown in Figure 5. One of them
is the Pappus configuration. Pappus’s configuration is easy to draw in the
real plane, since its incidences are guaranteed by a theorem. The other
two are not so easy to draw. Only certain coordinatizations are possible.
Similarly there are fifteen 103-configurations, which are listed in Bokowski
and Sturmfels [1]. Of these, only Desargues’ configuration can be easily
drawn, since its incidences are guaranteed by a theorem. The others re-
quire special coordinatizations. Augmented determining sets allow us to
select a point or line and move it arbitrarily. The remainder of the con-
struction is thereby determined. Such arbitrary movements are simply not

11

possible with the configurations just mentioned. Configurations with even
more incidences, for example, (3,4)-configurations or (4,4)-configurations,
are much more restrictive.

When a configuration is drawn on a computer screen, we assume that
the following four operations are available to construct the drawing.

M1: Place a new point, not incident with any existing lines.
M2: Place a new line, not incident with any existing points.
M3: Create a new point as the intersection of two existing lines.
M4: Create a new line as the join of two existing points.

2.7 Lemma. Any drawing constructed with operations M1 to M4 has a
determining set .
Proof . The points and lines which were placed by operations M1 and M2

form a determining set. The points and lines created by operations M3 and
M4 are determined objects.

Two more operations may also be available.

M5: Place a new point, incident with exactly one existing line.
M6: Place a new line, incident with exactly one existing point.

2.8 Lemma. Any drawing constructed with operations M1 to M6 has an
augmented determining set.
Proof . The points and lines which were placed by operations M1 and M2

form a set ∆0 of free objects. The points and lines created by operations
M5 and M6 form a set ∆1 of constrained objects. The points and lines
created by operations M3 and M4 are determined objects.

Thus, all of the drawings that are constructed in practice do have
augmented determining sets, and the algorithms described herein can be
successfully used to animate them. Experience with the algorithms indi-
cates that, if a configuration has an augmented determining set, then the
backtracking algorithm will find one very quickly. Existing software that
we are aware of, for example, the Cabri [3] software, allows diagrams to be
animated to a limited degree. Experience with the program indicates that
only points and lines which are part of the original determining set, i.e.,
that given by Lemma 2.7, can be animated. Constrained points and lines
can be animated, but their movement is restricted to the line or point con-
straining them . Currently, Cabri does not allow movement of other points
and lines. The algorithms described above allow these restrictions to be by-
passed. In order to move a line or point, we need only find an augmented
determining set containing it.

In general, (3,3)-configurations cannot be drawn by operations M1 to
M6. This is because most of them require special coordinatizations. We
will say more about this in section 4.

12

3. Movement

Suppose now that (Σ, Π) is a configuration and that an object o′ ∈ Σ is to
be moved. We can initialize Q2 to contain o′ and apply the above algorithm
to find an augmented determining set ∆+ = (∆0, ∆1) such that o′ ∈ ∆0,
if one exists. The algorithm will save the queue Q2 and the antecedents
a1(o) and a2(o) of each determined object o. Constrained objects will have
only one antecedent, a1(o). We now scan the queue from Q2[1] to Q2[n],
and compute the new coordinates of each object. If object o has original
coordinates o, the movement applied to o is denoted by δ(o). The new
coordinates are therefore o + δ(o). In the next iteration of the loop, this
new position will again be denoted by o. For each object o ∈ Q2, the
following three cases are possible.

• o has no antecedents. In this case o ∈ ∆0 is a free object. If o = o′, its
coordinates are assigned according to whatever movement was applied
to o′. If o 6= o′, then the coordinates of o are unchanged.

• o has two antecedents. In this case o is a determined object. Its new
coordinates are given by the cross product of the new coordinates of
its antecedents a1(o) and a2(o).

• o has one antecedent. In this case o ∈ ∆1 is a constrained object. Sup-
pose that its antecedent a1(o) had coordinates a before it was moved,
and that its movement was δ(a). If a · (a + δ(a)) 6= 0, then define

δ(o) = −δ(a)·o
a·(a+δ(a))a. Otherwise define δ(o) = a − o. Then the new

coordinates of o will constrain it to be incident with its antecedent.

3.1 Proposition. Suppose that o · a = 0. Let δ(a) be an arbitrary vector.

If a · (a + δ(a)) 6= 0, then define δ(o) = −δ(a)·o
a·(a+δ(a))a. Otherwise define

δ(o) = a − o. Then (o + δ(o)) · (a + δ(a)) = 0.
Proof . If a · (a + δ(a)) = 0, then the result is obvious. If a · (a + δ(a)) 6= 0,
then the result can be verified by substituting for δ(o) and simplifying.

So we can animate any configuration for which an augmented deter-
mining set is available. It is also possible to express the movement as a
set of equations in the homogeneous coordinates. Let P1, P2, . . . , Pn be the
n points of a configuration, and let `1, `2, . . . , `m be the m lines. Denote
the point-line incidence matrix by A. Suppose that the coordinates of all
Pi and `j are known. They satisfy the following set of equations, given in
matrix form.

P1

P2
0

0
. . .

Pn

 ·A ·

`1

`2
0

0
. . .

`m

 = 0

13

If P denotes the leftmost matrix and ` the rightmost, this can be expressed
as P ·A · ` = 0. If now P1, say, is to be moved, the new coordinates of each
object are given by solving the equations

(P + δ(P)) · A · (` + δ(`)) = 0

for the 3n variables δ(Pi) and the 3m variables δ(`i), where δ(P1) is known.
This reduces to

δ(P) · A · ` + P · A · δ(`) + δ(P) · A · δ(`) = 0.

The first two terms are linear, but the third one is quadratic. So we cannot
expect to solve it using only linear algebra. Futhermore, the system is
usually highly underdetermined because of the property that homogeneous
coordinates can be freely multiplied by any constant without affecting the
result. There are 3n+3m variables, a large number when there are only n+
m objects to be animated. It may be possible to solve the system iteratively,
but augmented determining sets allow for a much simpler solution, as has
been shown above.

4. Forcing Incidences

If the configuration of Figure 3 consisting of two triangles in perspective
from a point is drawn on a computer screen, we will find that the dotted
line ` in Figure 3 can be drawn as the join of any two of the points Q,R, and
S. The third point will automatically be incident with `. This is because of
Desargues’ theorem. Adding the line ` to the drawing of Figure 3 creates
the Desargues configuration. However, if we add ` to the drawing as the
join of only two of Q, R, S (operation M4), the incidence graph of the
configuration will not be the Desargues configuration, since one incidence
will be missing. Thus we observe that the Desargues configuration with
one incidence removed has a determining set. This incidence is irrelevant
to the drawing, since Desargues theorem ensures that if any object in the
drawing is moved, the line ` will always remain incident with all three of
Q,R,S. A similar observation holds for the Pappus configuration.

However the same is not true of the other 93-configurations and 103-
configurations. These configurations cannot be constructed so easily. We
can construct the entire drawing, but for one line, using operations M1 to
M6. The last line is to be incident with three points Q,R, and S. When we
construct a line ` as the join of Q and R, we find that ` is not incident with
S. This is because the incidences of these configurations are not guaranteed
by theorems, so that they can only be coordinatized in special ways (in fact
no rational coordinatizations are possible for these drawings, see Bokowski

14

and Sturmfels [1]). So, after constructing ` = RS, we then attempt to move
Q slightly so as to make it incident with `. However moving Q causes ` to
move as well. Eventually, after several iterations of this process, we have
Q and ` aligned, at least to sight. But, if we now move any object in the
diagram, Q and ` will drift apart. There are two observations that we make
at this point.

• If we remove a single incidence from a 93-configuration or 103-
configuration, then an augmented determining set exists;

• Once ` and Q have been aligned, we need a way to tell the program
that they are incident, so that they cannot drift apart again.

We use the first observation to devise a method allowing n3-configurations
to be animated. This is presented in section 5. In this section we describe
a means of implementing an algorithm for the second observation.

If a point Q and line ` are aligned on the screen according to sight,
we may find that Q · ` = 0.00423541, for example; that is, they are not
aligned sufficiently accurately for the computer to consider them incident.
We assume that the computer requires that |Q ·`| < ε, where ε is a suitably
small constant (maybe 10−6). In order to make Q and ` incident, we must
first adjust the diagram slightly, until |Q ·`| < ε, and then add the incidence
P` to the incidence graph. In order to force P and ` to be incident, we
have used an iterative procedure. Assume that an augmented determining
set ∆+ is available for the configuration without incidence P`, such that
P ∈ ∆0 and ` 6∈ ∆0 ∪∆1. The current coordinates of P are known. We are
to move P by an amount δP = (x, y, z) to make it incident with `, where
x, y, and z are to be determined. The remaining objects of ∆+ will not be
moved.

Suppose that a line m of rank one is determined by points P and
Q, so that m = P × Q. If P and Q were moved slightly, then δm =
δP × Q + P × δQ + δP × δQ. If δQ = 0, we can write the homogeneous
coordinates of δm as linear combinations of x, y, and z. Thus, the change in
the homogeneous coordinates of any object of rank 1 is a linear combination
of x, y, and z. If now M = p×q is an object of rank two, determined by lines
p and q of rank ≤ 1, then δM = δp×q+p×δq+δp×δq , where the coordinates
of δp and δq are linear combinations of x, y, and z. This equation can be
linearized by ignoring the quadratic term. If the movements are small, this
should give a good approximation. Therefore we take δM ≈ δp × q + p× δq ,
and the coordinates of δM are then also linear combinations of x, y, and z.
Thus, the change in the homogeneous coordinates of any object of rank 2 is
also a linear combination of x, y, and z. In general, when P is moved by an
amount δP = (x, y, z), we can approximate the change in the coordinates
of all objects as linear combinations of x, y, and z. In particular, δ` is also

15

a linear combination of x, y, and z. Since we want P and ` to be incident,
we write

(P + δP) · (` + δ`) ≈ P · ` + P · δ` + δP · ` = 0.

Each term in this expression is either a constant (P · `) or a linear combi-
nation of x, y, and z. Thus we can write this equation as

rx + sy + tz = −c

where c = P · `. We now describe an algorithm that can be used to adjust
the coordinates of the objects until P and ` are incident.

• Find an augmented determining set (∆0, ∆1) such that P ∈ ∆0 and
` 6∈ ∆0 ∪ ∆1. P is to be moved by an amount δP = (x, y, z). All other
objects of ∆0 ∪ ∆1 are assigned movements (0,0, 0).

• While |P · `| > ε do
– Calculate the δ’s of all objects in terms of δP . These will be linear

combinations of x, y, and z.
– Evaluate the expression P · ` + P · δ` + δP · `. Because of the

simplification, this will be of the form rx + sy + tz + c, where
r, s, t, and c are real values.

– Solve the constraining equation rx + sy + tz = −c for x, y, and z.
– Apply the movement (x, y, z) to P and recalculate the positions

of all objects in the construction.
• Add the incidence P` to the incidence graph of the configuration.

Solving the Constraining Equation

Notice that we have a tremendous amount of freedom in choosing x, y,
and z when solving rx + sy + tz = −c. One way would be to arbitrarily
select values for x and y, say, and then solve for z. However this produces
erratic movement in the diagram. Another solution is to take (x, y, z) =
(−c

3r , −c
3s , −c

3t). This satisfies the constraining equation and spreads the effect
of the movement more evenly across x, y, and z. Notice that c = P · ` is a
measure of how close P and ` are. As P and ` move closer to each other
with each iteration, c becomes smaller and the applied movement becomes
smaller. This helps to reduce the oscillation that can result with iteration
-based algorithms.

However this method does not take into account the current position of
P . Applying a relatively large movement to a small coordinate of P could
drastically change the position of P . If (P1, P2, P3) are the homogeneous
coordinates of P , write |P | = |P1| + |P2| + |P3|. Define the movement

(x, y, z) = (
−c|P1|
r|P | ,

−c|P2|
s|P | ,

−c|P3|
t|P |). Then the larger coordinates of P will be

changed by a greater amount than the smaller coordinates.

16

When these methods were tested, the last method was found to pro-
duce the nicest and most consistent results. For example, Figure 6 shows
a 103-configuration which was constructed in this way. All incidences but
one were constructed by the operations M1 to M6. The last incidence, be-
tween the dashed line and shaded point, was constructed by executing the
incidence-forcing operation. We call this operation M7:

M7: Given a point P and a line ` in a configuration, force P and ` to
be incident.

Use of the incidence-forcing operation allows n3-configurations to be easily
constructed.

Figure 6 Result of applying the incidence-forcing algorithm.

Suppose that an incidence has been forced, thereby creating an n3-
configuration for some n. We may very likely want to adjust the drawing
slightly by moving one or more of its objects. However we know that the
configuration now has no augmented determining set. The next section
shows how we can circumvent this problem.

5. Movement When No Determining Set Exists

Let (Σ, Π) be a configuration for which no augmented determining set ex-
ists. We describe two methods that can be used to animate the drawing.
The first method is based on the incidence-forcing algorithm of the pre-
vious section. The second method is based on central collineations of the
projective plane.

Suppose that an object o is to be moved. We select a point P and a
line ` such that P` ∈ Π, and remove the incidence P` from the incidence
graph. The modified configuration will still look the same on the screen, but
may now have an augmented determining set. We then find an augmented
determining set such that o, P ∈ ∆0, and ` 6∈ ∆0 ∪ ∆1, if one exists. It is
now possible to move o, but, as we do, the point P and line ` will start to
drift apart. Therefore with each movement of o, we apply the incidence-
forcing algorithm to move P and ` together again. When the movement of o

17

is complete, we restore the incidence P` to the configuration. This method
is found to work quite well in practice, although there are two difficulties
which can arise.

If a construction has a determining set, it tends to have many, and they
are easy to find. However it is quite possible that augmented determining
sets with constraints such as o, P ∈ ∆0, and ` 6∈ ∆0 ∪ ∆1 do not exist. To
avoid a long time spent backtracking, we have set a maximum number of
iterations allowed in the search for an augmented determining set. If one
is not found within the set number of iterations (for example, 30), then
the algorithm gives up and refuses to allow the movement of object o. In
this way we always have a linear time bound on the performance of the
algorithm. If there are n objects in total, the number of steps required to
animate the diagram is O(n), since each animation requires running though
a queue of n objects, once an augmenting determining set has been found.
It is also possible to store a collection of augmented determining sets for
a given configuration, such that each object is in at least one set, so that,
before executing the backtracking algorithm to find a determining set, the
program first checks if one is already known.

The second problem which can arise is the phenomenon of collapse.
The incidence-forcing algorithm moves P and ` together by iteratively ad-
justing the positions of all objects in Σ until the process converges. Some-
times the process converges to a solution in which several points or several
lines have the same coordinates. Thus on the screen they appear superim-
posed on each other. Once a diagram has collapsed, it remains collapsed. It
can still be animated, but objects with equal coordinates will ever after have
equal coordinates. In effect we have a homomorphism from the original con-
figuration (Σ, Π) to a reduced configuration (Σ′,Π′). Each o ∈ Σ is mapped
to some o′ ∈ Σ′. If P` ∈ Π, then P ′`′ ∈ Π′. The study of configurations
(Σ, Π) and their homomorphic images (Σ′, Π′) may be of some interest. We
have also found that the particular determining set used in such cases can
have a marked effect on the animation of a diagram. Whereas a diagram
may collapse with a given determining set, or have erratic movement, if
a different determining set is selected, the motion will be much smoother.
More work needs to be done on this question.

Collineations

A collineation of the projective plane is an incidence-preserving mapping
of the plane to itself. A central collineation (see Pedoe [4]) is a collineation
which has a line of fixed points and a point of fixed lines. For example,
Figure 7 shows a collineation α in which all points on line ` are fixed and
all lines through point P are fixed. If we know that α maps Q onto R, that
is, Qα = R, and we want to find Sα, this is easily done by constructing the

18

line QS, finding its intersection X with `, and then finding the line XR
and its intersection with PS. In terms of homogeneous coordinates,

Sα = {[(Q × S) × `] × R} × (P × S).

X`

T

P

Q
S

R

Figure 7 A central collineation determined by P and `.

This is fast to compute. It is just 5 cross-products. It is easy to specify a
central collineation on the computer screen. We draw a line ` and a point
P 6∈ ` and tell the computer that they are to be considered as the fixed line
and point of a central collineation α. When a point Q 6∈ `, where Q 6= P ,
is moved to some point R ∈ PQ, where R 6∈ `, a collineation α is specified
by taking Qα = R.

Suppose now that two central collineations α1 and α2 are to be deter-
mined, with `1, P1 and `2, P2 fixed. A point Q in a configuration (Σ, Π) is
moved to a position R. This is illustrated in Figure 8.

P1
P2

`1

`2Q
R

X

Figure 8 A pair of central collineations.

5.1 Lemma. Given distinct lines `1, `2 and distinct points P1 6∈ `1 and
P2 6∈ `2, let Q 6= P1 and R 6= P2 be points such that Q 6∈ `1, R 6∈ `2. Let X
denote the intersection of the lines P1Q and P2R. If X 6∈ `1, `2, then there
is a unique pair of central collineations α1, α2 such that Qα1α2 = R, where
P1, `1 correspond to α1 and P2, `2 correspond to α2.

19

Proof . Q can only be moved along the line P1Q by α1. R can only be
moved along the line P2R by α2. Let X be the intersection of P1Q and
P2R. If X 6∈ `1, there is a unique α1 moving Q to X . If X 6∈ `2, there is a
unique α2 moving X to R. Thus R = Qα1α2 .

We can use this lemma to animate any construction for which an aug-
mented determining set is not available. We first define `1, P1 and `2, P2

so that they are not part of the configuration (Σ,Π). When a point Q
in the configuration is moved to a point R = Q + δQ, we find α1 and α2

as in Lemma 5.1. Finding α1 requires 5 cross products after the point X
has been found. Finding α2 requires an additional 5 cross products. We
then animate the diagram by mapping the position of each object o ∈ Σ to
oα1α2 . Since collineations preserve incidence in the entire plane, we can be
sure that all incidences of the configuration (Σ,Π) will be maintained. This
movement is very quick to compute and produces a “nice” animation. It
requires a constant number of steps for each movement of Q. If a line q is
to be moved instead of a point Q, the dual of the lemma is used. There is a
possible difficulty if it is found that X ∈ `1 or X ∈ `2. This does not seem
to occur in practice. It can be avoided by using 3 successive collineations
if it does occur.

6. Conclusion

The algorithms described in this paper have been implemented on a Sparc
computer using the X-Windows system. They were found to perform very
well in practice. They allow diagrams to be constructed by the following 7
operations.

M1: Place a new point, not incident with any existing lines.
M2: Place a new line, not incident with any existing points.
M3: Create a new point as the intersection of two existing lines.
M4: Create a new line as the join of two existing points.
M5: Place a new point, incident with exactly one existing line.
M6: Place a new line, incident with exactly one existing point.
M7: Given a point P and a line ` in a configuration, force P and ` to be

incident.

They allow an arbitrary point or line of a diagram to be selected and moved,
without constraints. The entire diagram is animated so as to maintain all
incidences. We finish with a list of questions.

1. Find necessary and sufficient conditions for a configuration to have
an augmented determining set. Often, when moving an object P , a
user wants one or more objects o1, o2, . . . to remain stationary in order
to see the effect of moving P on other objects. Thus an augmented

20

determining set containing P and o1, o2, . . . is needed. What effect
does the pre-inclusion of several objects have on the existence of an
augmented determining set?

2. Is there a polynomial algorithm to determine whether a configuration
has an augmented determining set?

3. Under what conditions will a configuration collapse onto a homomor-
phic image? What collapsed configurations are possible?

4. Investigate the effect of the choice of determining set on the animation
of geometric configurations.

Acknowledgement

We would like to thank David Kelly of the Mathematics Department of the
University of Manitoba for a number of helpful discussions on the topic of
determining sets.

References

1. Jürgen Bokowski and Bernd Sturmfels, Computational Synthetic Ge-
ometry , Lecture Notes in Mathematics #1355, Springer-Verlag, 1989.

2. H.S.M. Coxeter, The Real Projective Plane , Cambridge University
Press, Cambridge, 1961.

3. Jean-Marie Laborde and Franck Bellemain, Cabri Geometry , Macin-
tosh computer software, Université Joseph Fourier, 1994.

4. Daniel Pedoe,An Introduction to Projective Geometry ,PergamonPress,
New York, 1963.

21

