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Abstract

The question of necessary and sufficient conditions for the
existence of a simple 3-uniform hypergraph with a given degree
sequence is a long outstanding open question. We provide
a result on degree sequences of 3-hypergraphs which shows
that any two 3-hypergraphs with the same degree sequence
can be transformed into each other using a sequence of trades,
also known as null-3-hypergraphs. This result is similar to the
Havel-Hakimi theorem for degree sequences of graphs.

1 Introduction

The question of necessary and sufficient conditions for the existence
of a simple hypergraph with a given degree sequence is a long out-
standing open question. See Berge [1], and Murthy and Srinivasan
[2]. In Colbourn, Kocay and Stinson [4], it was proved that certain
related questions are NP-complete. Many graph problems that have
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polynomial-time algorithms are known to be NP-complete when ap-
plied to 3-uniform hypergraphs. One example is the determination of
the existence of a perfect matching in a graph (which is in P) versus
the existence of a 3D-matching in a 3-uniform hypergraph (which is
NP-complete). However, given a sequence of n positive integers, the
computational complexity of determining whether there is a simple
3-uniform hypergraph with this sequence as its degree sequence, is
currently unknown. In this paper, we present a result which may be
useful in resolving this problem.

The set of all k-subsets of a set V is denoted by
(

V
k

)

. A simple

k-uniform hypergraph on the vertex set V is any subset H ⊆
(

V
k

)

(repeated k-sets are not allowed).
(

V
k

)

is also called the complete
k-uniform hypergraph, as it contains all k-sets. In this paper we are
concerned with k = 3. By the term 3-hypergraph, we will always
mean a simple 3-uniform hypergraph. Each 3-set X ∈

(

V
3

)

is called
a triple. We will also use the term triple system for 3-hypergraph.
Given any x ∈ V , the degree of x in a hypergraph H is deg(x,H), the
number of triples of H which contain x. Let V = {1, 2, . . . , n}. The
degree sequence of H is (d1, d2, . . . , dn), where d1 ≥ d2 ≥ . . . ≥ dn are
the degrees of the vertices. A sequence D = (d1, d2, . . . , dn) of inte-
gers, such that d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 is called valid or hypergraphic
if there is a simple 3-hypergraph H with degree sequence D.

3-Hypergraph Degree Sequence: Given a sequence D = (d1, d2,

. . . , dn) of integers, such that d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.
Question: Is D a hypergraphic degree sequence?

This question of whether there exists a polynomial-time algo-
rithm to settle this question has remained unsolved for many years. It
is stated as Problem 3.1 in [4]. The corresponding question for graphs
was solved by the Havel-Hakimi theorem [7] and the Erdös-Gallai
conditions [7]. The Havel-Hakimi theorem results in a polynomial-
time algorithm to construct a simple graph with a given degree se-
quence, if one exists. The Erdös-Gallai conditions characterize the
polytope of valid degree sequences. A polynomial-time algorithm to
solve the hypergraph degree sequence problem, even when restricted
to 3-uniform hypergraphs, is unknown.

In Section 2, we discuss trades and state our main result. In
Section 3 we present the proof of our main result. In Section 4, we
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discuss the problem of partitioning 3-hypergraphs into two 1-designs.

2 Trades, Null-Hypergraphs

Let H1 and H2 be two 3-hypergraphs on the set V such that
deg(x,H1) = deg(x,H2), for all x ∈ V . We assign a weight of +1 to
each triple in H1, and −1 to each triple in H2. Let H = H1 ⊕H2 be
the exclusive or (also known as symmetric difference) of the sets of
triples of H1 and H2. Thus, a triple belongs to H if and only if it
belongs to exactly one of H1 or H2. It may be that H = ∅, in which
case H1 = H2. Otherwise, H consists of a number of triples having
a weight of +1 and an equal number of triples having a weight −1.
Then the net degree of any vertex x, taking the weights into consid-
eration, is deg(x,H) = deg(x,H1) − deg(x,H2) = 0. Any weighted
hypergraph H whose triples have been assigned weights ±1, with the
property that deg(x,H) = 0 for all x ∈ V is called a null hypergraph.
We will also use the terms null triple system and trade, although null
hypergraph is more general. The term trade derives from design the-
ory – when the triples of H2 are removed and substituted with the
triples of H1, a “trade” has occurred, but the degrees of the vertices
have not changed. The book Triple Sytems by Colbourn and Rosa
[3] contains a section on trades in Steiner triple systems. We will use
the word “trade” in this sense, when a set of triples is removed from
a hypergraph, and substituted with another set, so as to maintain
the vertex degrees. We now proceed to look at null 3-hypergraphs
on small vertex sets.

It is fairly easy to see that there are no null triple systems when
|V | ≤ 4 (except the empty hypergraph, containing no triples). There
are three possible null triple systems when |V | = 5. They are shown
in Figure 1, where a triple {i, j, k} is denoted ijk. The fact that these
are the only null triple systems on 5 vertices (up to isomorphism) was
verified by an exhaustive computer search. We denote the first of
these three null triple systems by N5. When we need to indicate the
triples it contains, we also write it as N5(123, 145; 125, 134), where
the first set of triples are those with positive weight, and the second
set are those with negative weight.

On 6 vertices, there are many null triple systems (a non-exhaustive
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H1 : 123, 145 H1 : 123, 245, 345 H1 : 123, 135, 145, 234, 245
H2 : 125, 134 H2 : 145, 234, 235 H2 : 134, 124, 125, 235, 345

Figure 1: N5, Na and Nb, the null triple systems on five vertices

search has found 83). We will only be concerned with a single null
triple system on 6 vertices, given by Figure 2.

H1 : 123, 456
H2 : 124, 356

Figure 2: N6, a null triple system on six vertices

We denote this null triple system by N6. When we need to refer
to the actual triples, we write it as N6(123, 456; 124, 356). These null
triple systems can also be represented by bipartite incidence graphs,
as shown in Figure 3, where the nodes coloured black represent the
triples, and the nodes containing numbers represent the vertices.

Notice that if N and N ′ are null triple systems on vertices V ,
such that all triples of N ∩N ′ have opposite sign in N and N ′, then
N⊕N ′ is also a null triple system. We now state the main theoretical
result of this paper.

Theorem 2.1 Let H be any null 3-hypergraph on vertex set V . Then
there is a sequence of null 3-hypergraphs M1,M2, . . . ,Mk, for some
k ≥ 0, such that H = M1 ⊕ M2 ⊕ . . . ⊕ Mk, where each Mi is iso-
morphic to either N5 or N6.

It will follow from this theorem, that if H1 and H2 are any two
3-hypergraphs with the same vertex degrees, and a null triple system
H1 ⊕ H2 is created by assigning weight +1 to the triples of H1; and
−1 to the triples of H2, so that H1 ⊕ H2 = M1 ⊕ M2 ⊕ . . . ⊕ Mk;
then H2 = H1 ⊕ M1 ⊕ M2 ⊕ . . . ⊕ Mk; that is, any 3-hypergraph H2

with the same vertex degrees as H1 can be constructed from H1 by
a sequence of trades isomorphic to N5 or N6. At each step in the
transformation, two triples are removed, and two are added, such
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Figure 3: The incidence graphs of N5 and N6

that they form an N5 or N6. Moreover, the proof will show how to
transform H1 into H2.

3 Proof of the Theorem

Let H be a null 3-hypergraph on vertex set V with n vertices. Let
b denote the number of triples of H with positive weight. The proof
of Theorem 2.1 is by induction on b. If b = 0, the result is clearly
true. As there are no null triple systems with b = 1, it is also true
when b = 1. The only null triple systems with b = 2 are N5 and N6.
Therefore, it is also true when b = 2. Suppose now that b ≥ 3. We
show that H can always be reduced to a null triple system H ′ with
b′ < b positive triples.

It is convenient to colour the edges of H with weight +1 blue,
and those with weight −1 red. We then denote a blue triple as B123,
etc. We write the blue degree of a vertex x as degB(x,H), and the
red degree as degR(x,H).

Case 1. There is a red triple and a blue triple intersecting in two ver-
tices.

Without loss of generality, let the triples be B123 and R124.
There must also be a red triple containing vertex 3, and a blue
triple containing vertex 4.
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(1a) There exists a red triple T containing vertex 3, but not
vertex 4.

Let T = R3uv, where u, v 6= 4. Notice that {u, v} 6=
{1, 2}, since B123 is a blue triple. Therefore {u, v} and
{1, 2} intersect in at most one vertex.

(1a.i) There is no red triple R4uv.
Let N = N(124, 3uv; 123, 4uv). If {u, v} ∩ {1, 2} = ∅,
this will be an N6. Otherwise it will be an N5. Set
H ′ = H ⊕ N , as shown in Figure 4. Then H ′ is a
null triple system with at most b− 2 blue triples. By
induction, H ′ can be written as M1⊕M2⊕M3...⊕Mk,
so that H = N ⊕ H ′, as required.

H : B123;R124, R3uv, . . .

N : B124, B3uv;R123, R4uv

H ⊕ N : R4uv, . . .

Figure 4: Case 1a.i

(1a.ii) Otherwise, for every red triple R3uv, where u, v 6= 4,
there is also a red triple R4uv. Since R124 is a red
triple, it follows that degR(4,H) ≥ degR(3,H) + 1.
We will return to this case shortly.

(1b) There exists a blue triple T containing vertex 4, but not
vertex 3.

This case is symmetric to (1a). However, we will later
need the explicit statement of the conclusion of (1b.ii);
hence we include the details of the proof. Let T = B4uv,
where u, v 6= 3. Notice that {u, v} 6= {1, 2}, since R124
is a red triple. Therefore {u, v} and {1, 2} intersect in at
most one vertex.

(1b.i) There is no blue triple B3uv.
Let N = N(124, 3uv; 123, 4uv). If {u, v} ∩ {1, 2} = ∅,
this will be an N6. Otherwise it will be an N5. Set
H ′ = H ⊕ N , as shown in Figure 5. Then H ′ is a
null triple system with at most b− 2 blue triples. By
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induction, H ′ can be written as M1⊕M2⊕M3...⊕Mk,
so that H = N ⊕ H ′, as required.

H : B123, B4uv;R124, . . .
N : B124, B3uv;R123, R4uv

H ⊕ N : B3uv, . . .

Figure 5: Case 1b.i

(1b.ii) Otherwise, for every blue triple B4uv, where u, v 6= 3,
there is also a blue triple B3uv. Since B123 is a blue
triple, it follows that degB(3,H) ≥ degB(4,H) + 1.
We will also return to this case shortly.

(1c) Every red triple containing vertex 3 also contains vertex
4 and every blue triple containing vertex 4 also contains
vertex 3.

In this case, since R124 is a red triple, we have degR(4,H)≥
degR(3,H) + 1. Also, since B123 is a blue triple, we
have degB(3,H) ≥ degB(4,H) + 1. Since degR(4,H) =
degB(4,H) and degR(3,H) = degB(3,H), this case is
clearly impossible.

To complete the proof of Case 1, we notice that if one of (1a.i)
or (1b.i) occurs, that there is a trade N5 or N6 which reduces H

to H ′ with fewer triples, so that induction can be used. In all
other cases (1a.ii), (1b.ii), we have degR(4) ≥ degR(3,H) + 1
and degB(3,H) ≥ degB(4,H) + 1. But since degR(3,H) =
degB(3,H) and degR(4,H) = degB(4,H), this is impossible.
Therefore, we see that cases (1a.ii) and (1b.ii) are also impos-
sible. We conclude that at least one of cases (1a.i) or (1b.i)
always applies.

Case 2. Any red triple and blue triple intersect in at most one vertex.

Notice that as H is a null 3-hypergraph, there must exist two
triples (of different colors) that intersect in exactly one vertex.
Without loss of generality, take a blue triple B123 and a red
triple R145, which intersect in vertex 1. There is also a red
triple containing vertex 2 and a blue triple containing vertex 4.
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(2a) There exists a red triple T = R2uv such that {u, v} 6=
{4, 5}.

Without loss of generality, write T = R26u.

(2a.i) There is no red triple R456.
Let N = N6(145, 236; 123, 456). Notice that B236 6∈
H, since B236 and R26u intersect in two vertices. Set
H ′ = H ⊕N , as shown in Figure 6. Then H ′ is a null
3-hypergraph on b triples, containing the triples R26u
and B236, which intersect in two vertices. By Case
(1), H ′ can be written as M1 ⊕ M2 ⊕ M3... ⊕ Mk, so
that H = N ⊕ H ′, as required.

H : B123;R145, R26u, . . .

N : B145, B236;R123, R456
H ⊕ N : B236;R456, R26u . . .

Figure 6: Case 2a.i

(2a.ii) Otherwise, for every red triple R2uv, where {u, v} 6=
{4, 5}, there is also a red triple R45u. Since R145 is a
red triple, it follows that degR(4,H) ≥ degR(2,H)+1.
We will return to this case shortly.

(2b) There exists a blue triple T = B4uv such that {u, v} 6=
{2, 3}.

This case is symmetric to (2a). As we will later need the
explicit statement of (2b.ii), we include the details of the
proof. Without loss of generality, write T = B46u.

(2b.i) There is no blue triple B236.
Let N = N6(145, 236; 123, 456). Notice that R456 6∈
H, since R456 and B46u intersect in two vertices. Set
H ′ = H ⊕ N . Then H ′ is a null triple system on b

triples, containing the triples R456 and B46u, which
intersect in two vertices. By Case (1), H ′ can be
written as M1⊕M2⊕M3...⊕Mk, so that H = N⊕H ′,
as required.

(2b.ii) Otherwise, for every blue triple B4uv, where {u, v} 6=
{2, 3}, there is also a blue triple B23u. Since B123 is a
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H : B123, B46u;R145, . . .
N : B145, B236;R123, R456
H ⊕ N : B236, B46u;R456 . . .

Figure 7: Case 2b.i

blue triple, it follows that degB(2,H) ≥ degB(4,H)+
1. We will also return to this case shortly.

(2c) R245 is the only red triple containing 2.

B234 is the only blue triple containing 4.

Since R145 is a red triple, we have degR(4,H) ≥
degR(2,H) + 1. Since B123 is a blue triple, we have
degB(2,H) ≥ degB(4,H) + 1.

To complete the proof of Case 2, we notice that if one of (2a.i)
or (2b.i) occurs, that there is a trade N6 which reduces H to
H ′ containing a red triple and a blue triple which intersect
in two vertices, so that Case (1) can be used. In all other
cases, we have degR(4,H) ≥ degR(2,H) + 1 and degB(2,H) ≥
degB(4,H) + 1. But since degR(2,H) = degB(2,H) and
degR(4,H) = degB(4,H), this is impossible. We conclude that
at least one of cases (2a.i) or (2b.i) always applies. It follows
that the result is true if any red triple and blue triple intersect
in at most one vertex.

This completes the proof of the theorem. �

We state the corollary as follows:

Corollary 3.1 Let H1 and H2 be any two simple 3-hypergraphs with
the same degree sequence. Then H1 can be transformed into H2 by a
sequence of trades isomorphic to N5 or N6.

We remark that the corresponding results for simple graphs use
the single null graph N4(12, 34; 13, 24). Any two graphs with the
same degree sequence can be transformed into each other using trades
isomorphic to N4. This is a consequence of the Havel-Hakimi theorem
[7]. A null graph can be viewed as an Eulerian graph in which half
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the edges at each vertex have been coloured blue, and half have been
coloured red. Such a graph always has an alternating Euler tour; that
is, an Euler tour whose edges alternate blue and red. Conversely, any
Euler tour in an Eulerian graph with an even number of edges can
be coloured alternately red and blue to construct a null graph. This
is a structural characterization of null graphs. We know of no such
characterization for null 3-hypergraphs.

Problem 4.2. Find a characterization of null 3-hypergraphs.

Consider the following related problem for hypergraph degee se-
quences. We are given non-negative integers dij , where i, j ∈ {1, 2,
. . . , n}, i 6= j, and dij = dji. We ask whether there is a simple 3-
hypergraph H such that i and j occur together in exactly dij triples.
This problem was proved to be NP-complete in [4] (where it appears
as Problem 3.3).

It is likely that a result similar to Theorem 2.1 holds for k-
hypergraphs, for all k ≥ 4. We have used the null hypergraphs N5

and N6 to transform a 3-hypergraph with a given degree sequence
into any other with the same degree sequence. Now N5 and N6 are
the unique null triple systems with b = 2 positive triples. We con-
jecture that the trades required for transforming k-hypergraphs with
the same degree sequence, are exactly those null k-hypergraphs with
b = 2 positive k-sets.

4 Partitioning 3-hypergraphs into 1-designs

A graph is said to be r-regular if every vertex has degree r. A k-
uniform hypergraph in which every vertex has the same degree is said
to be a 1-design. We write 1-(v, k, λ) to denote a simple k-uniform
hypergraph which is a 1-design on v vertices in which each vertex
has degree λ. The three non-isomorphic null triple systems on five
vertices are shown in Figure 1. The first of these is N5. Denote
the other two by Na and Nb, respectively. Each has a set of triples
H1 of positive weight and a set H2 of negative weight. Denote the
triples of positive weight by N+

a , and those of negative weight by
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N−
a . Notice that N+

b and N−
b are both 1-(5, 3, 3) designs with vertex

set V = {1, 2, 3, 4, 5}.
Now in the complete hypergraph

(

V
3

)

, every vertex has degree
(4
2

)

= 6. Thus, N+
b and N−

b are both exactly half of
(

V
3

)

. In general,

let V = {1, 2, . . . , v}. Whenever there is a 1-(v, 3, 1
2

(

v−1
2

)

) design
H1, there will be a null 3-hypergraph whose positive triples are H1,
and whose negative triples are H2 =

(

V
3

)

− H1, such that H1 and

H2 are both 1-designs; that is, the complete hypergraph
(

V
3

)

can be
decomposed into two 1-designs.

Referring to Figure 1, notice that N+
5 ⊆ N+

b
and that N−

5 ⊆ N−
b

.
It follows that Nb − N5 is also a null triple system. In fact, it is
isomorphic to Na. Hence, we can view N5 and Na as complementary
null 3-hypergraphs, with respect to the decomposition of

(

V
3

)

into

two 1-designs. Whenever the complete hypergraph
(

V
3

)

can be parti-
tioned into two 1-designs, there will be a relation of complementarity
for null 3-hypergraphs with vertex set V . The following conjecture
seems plausible.

Conjecture 4.1 Suppose that
(

V
3

)

can be partitioned into two 1-
designs. Let N be any null 3-hypergraph with vertex set V . Then
there is a 1-(v, 3, 1

2

(

v−1
2

)

) design H1 such that N+ ⊆ H1 and N− ⊆
(

V
3

)

−H1 (ie, N has a complement with respect to the null 3-hypergraph
determined by H1 and its complement).

Suppose that H is a 1-(v, 3, 1
2

(

v−1
2

)

) design. Since 1
2

(

v−1
2

)

must
be an integer, we have (v − 1)(v − 2) ≡ 0 (mod 4), so that v ≡ 1 or
2 (mod 4). The number of triples in H is 1

2

(

v
3

)

, which is then always
integral, as one of v, v − 1, v − 2 is always divisible by 3. We show
that this is the only requirement for the existence of a 1-(v, 3, 1

2

(

v−1
2

)

)
design.

A 1-factor of a 3-hypergraph H with v vertices is any sub-hyper-
graph that is a 1-(v, 3, 1) design. A 1-factorization is a partition
of H into 1-factors. A consequence of Baranyai’s theorem (see [6])
is that when v ≡ 0 (mod 3), then

(

V
3

)

has a 1-factorization. If in

addition, v ≡ 1 or 2 (mod 4), we then choose any 1
2

(

v−1
2

)

1-factors
of a 1-factorization to obtain the required 1-design.

When v 6≡ 0 (mod 3), we can proceed as follows. Take V =
{1, 2, . . . , v}. One of v − 1 and v − 2 is divisible by 3, so that 1

2

(

v−1
2

)
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is also divisible by 3. Let 1
2

(

v−1
2

)

= 3m. Choose a triple {a, b, c},
and construct the related triples {a+1, b+1, c+1}, {a+2, b+2, c+
2}, . . . {a + v − 1, b + v − 1, c + v − 1}, where addition is reduced,
modulo v, to give a unique integer in V . These triples form a 1-
(v, 3, 3) design. All triples whose three differences are the values
a− b, a− c, b− c are included in this 1-design. Now choose any other
triple {a′, b′, c′} such that {a− b, a− c, b− c} 6= {a′− b′, a′− c′, b′− c′}
and repeat. Do this m times until we have a 1-(v, 3, 3m) design, as
required. We summarize this as follows:

Theorem 4.2
(

V
3

)

can be partitioned into two 1-(v, 3, 1
2

(

v−1
2

)

) de-
signs if and only if v ≡ 1 or 2 (mod 4).

We remark that up to isomorphism, there is exactly one 1-(5, 3, 3)
design, given as N+

b in Figure 1. It has an automorphism group of
order 10, which is transitive on the vertices and on the triples of
the design. The uniqueness was verified by an exhaustive computer
search. When v = 6, the situation is as given by Lemma 4.3, which
was also found by an exhaustive computer search.

Lemma 4.3 Up to isomorphism, there are exactly seven distinct
1-(6, 3, 5) designs, given as the columns of the table in Figure 8.
Their automorphism groups have the order indicated in the last row
of the table. D2 is the complement of D1. The others are self-
complementary. There are six ways of partitioning

(

V
3

)

into two
1-designs.

We remark that D7 is a twofold triple system, that is, a 2-(6, 3, 2)
design in which each pair of vertices occurs in exactly two triples. Its
automorphism group is transitive on its 10 triples, and 2-transitive
on its 6 vertices.

Each of D1, . . . ,D6, together with its complement, contains sub-
hypergraphs isomorphic to N5 and to N6. D7 contains an N5, but
no N6. The following conjecture seems reasonable.

Conjecture 4.4 Given any 1-(v, 3, 1
2

(

v−1
2

)

) design H, where v ≥ 6.
The null hypergraph defined by H and its complement contains an
N5 or an N6.
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D1 D2 D3 D4 D5 D6 D7

123 123 123 123 123 123 123
124 124 124 124 134 124 124
125 125 125 125 125 125 135
126 134 134 134 134 134 146
134 135 136 136 156 156 156
256 246 245 246 236 236 236
345 256 256 256 246 256 245
346 346 346 345 345 345 256
356 356 356 356 356 346 345
456 456 456 456 456 456 346

8 8 10 2 4 3 60

Figure 8: The seven non-isomorphic 1-(6, 3, 5) designs.
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