
November, 2001

This paper appeared in Ars Combinatoria 64 (2002), 33-50

Embedding Graphs Containing K-Subdivisions

Andrei Gagarin and William Kocay*
Computer Science Department

University of Manitoba
Winnipeg, Manitoba, CANADA, R3T 2N2

e-mail: bkocay@cs.umanitoba.ca
gagarina@cs.umanitoba.ca

Abstract
Given a non-planar graph G with a subdivision of K5 as a subgraph,

we can either transform the K5-subdivision into a K3,3-subdivision if it is
possible, or else we obtain a partition of the vertices of G\K5 into equiva-
lence classes. As a result, we can reduce a projective planarity or toroidality
algorithm to a small constant number of simple planarity checks [6] or to a
K3,3-subdivision in the graph G. It significantly simplifies algorithms pre-
sented in [7], [10] and [12]. We then need to consider only the embeddings
on the given surface of a K3,3-subdivision, which are much less numerous
than those of K5.

1. Introduction

We use basic graph-theoretic terminology from Bondy and Murty [1] and
Diestel [2]. Let G be a 2-connected, undirected, simple graph. We are
interested in a practical efficient algorithm to decide whether G can be
embedded in the projective plane or torus.

Known algorithms in [7], [10] and [12] begin with a Kuratowski sub-
graph K5 or K3,3 in G, and try to extend an embedding of K5 or K3,3 to
an embedding of G in the projective plane or torus. Here we show that
non-planar graphs which do not contain a K3,3-subdivision are much easier
to embed than using the methods of [7], [10] or [12]. As there are many
labelled embeddings of K5 on the projective plane or torus, this eliminates
many of the cases which must be considered in the before mentioned algo-
rithms. However there are only two non-isomorphic embeddings of K3,3 on
the torus, and just one in the projective plane. The result is a considerable
simplification of the existing algorithms.

One needs a combinatorial description of a graph embedded on a sur-
face. Such a description is provided by a rotation system (cf. [5]) of the
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graph, which is a set of cyclically ordered adjacency lists of its vertices. For
a non-orientable surface the rotation system also includes a signature for
every edge. The signature of an edge is +1 or −1. It is negative when the
edge goes ”over the boundary” and positive otherwise. For a more detailed
description see [5].

The following theorem is well known.

Kuratowski’s Theorem. [9] A graph G is non-planar if and only if it
contains a subdivision of K3,3 or K5.

Hopcroft and Tarjan [6] developed an efficient practical linear time
algorithm to check if a graph G is planar or not. If G is planar, then its
planar rotation system can always be transformed into a 2-cell toroidal or
projective planar rotation system. We developed several methods to do this
transformation [4] and implemented them in the software Groups&Graphs
[8].

In general, a planarity testing algorithm can be modified so that in
case of a non-planar graph G it will return a subdivision of K5 or K3,3 in
G. We assume that G is a non-planar, 2-connected graph with no vertices
of degree 2.

We describe the structure of non-planar graphs with no K3,3-subdivi-
sion of a special type. These graphs have a partition of the vertices and
edges into equivalence classes. We can then proceed by recursion on the
subgraphs generated by the equivalence classes in G.

2. Structural Results

Let G be a non-planar graph. Following Diestel [2], we denote by TK5 a
K5-subdivision in G. We call the vertices of degree 4 corners of TK5 and
the vertices of degree 2 inner vertices of TK5. A path between two corners
with all other vertices inner vertices is called a side of the K5-subdivision.
Notice that two sides of a K5-subdivision can have at most one common
corner and no common inner vertices. A side having a common corner with
another side is called adjacent to that side. Two sides having no common
corner are called non-adjacent .

A path P in G with one endpoint an inner vertex of TK5, the other
endpoint on a different side of TK5, and all other vertices and edges in
G\TK5 is called a short cut of the K5-subdivision. A vertex u ∈ G\TK5 is
called a 3-corner vertex with respect to TK5 if G\TK5 contains internally
disjoint paths from u to at least three corners of the K5-subdivision (see
Fig. 4).

We begin by proving some basic structural results for graphs containing
a TK5. Similar structural results have been proved previously by M. Fellows
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and P. Kaschube [3]. We note that their proof of Theorem 1 [3] is missing
the case indicated by Fig. 1 of Proposition 2.1.

2.1 Proposition. [3] A non-planar graph G with a K5-subdivision TK5

for which there is either a short cut or a 3-corner vertex contains a K3,3-
subdivision.

Proof . To prove the proposition, we exhibit a K3,3-subdivision in G. In the
following diagrams the bipartition of K3,3 is indicated by black and white
vertices. Vertices which are not part of K3,3 are shaded grey.

The following cases are possible.

Case 1. Both endpoints of a short cut P are inner vertices of TK5 and the
corresponding two sides are non-adjacent. Fig. 1 shows a K3,3-subdivision
in G.

P

TK5

G

Fig. 1, K3,3 created by short cut P

Case 2. Both endpoints of a short cut P are inner vertices of TK5 and the
corresponding two sides are adjacent. Fig. 2 shows a K3,3-subdivision in
G.

P

TK5G

Fig. 2, K3,3 created by short cut P

Case 3. One of the endpoints of a short cut P is a corner of TK5. Fig. 3
shows a K3,3-subdivision in G.
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TK5

P

G

Fig. 3, K3,3 created by short cut P

Now suppose there is a 3-corner vertex u ∈ G\TK5. Then Fig. 4.
shows a K3,3-subdivision in G.

TK5

G

u

Fig. 4, K3,3 created by 3-corner vertex u

Thus any short cut or 3-corner vertex of TK5 in G gives a K3,3-
subdivision. The proposition is proved.

Let G be a graph having no 3-corner vertex and no short cut of TK5.
Let K be the set of corners of TK5. Consider the set of connected compo-
nents of G\K. Let C be any connected component of G\K.

2.2 Proposition. [3] For a graph G with TK5 and no short cut or 3-corner
vertex of TK5, a connected component C of G\K contains inner vertices
of at most one side of TK5. Moreover vertices of C are adjacent in G to
exactly two corners of TK5.

Proof . Suppose a connected component C contains inner vertices of two
different sides of TK5. Then clearly C contains a short cut of TK5 in G, a
contradiction.

Suppose C has vertices adjacent in G to at least 3 different corners of
TK5. Then it is not difficult to show that C contains either a short cut
or a 3-corner vertex of TK5, a contradiction. Therefore, vertices of C are
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adjacent in G to at most 2 corners of TK5. Since G is 2-connected, we have
exactly two such corners.

Given a graph G without a short cut or a 3-corner vertex of TK5 we
define a side component of TK5 as a subgraph in G induced by a pair of
corners a and b of TK5 and all connected components of G\K adjacent to
a and b.

2.3 Corollary. Two side components of TK5 in G have at most one
vertex in common. The common vertex is the corner of intersection of two
corresponding sides of TK5.

Proof . Any pair of corners of TK5 define a side. Since G is 2-connected,
by Proposition 2.2, we can associate every connected component of G\K
with a unique side of TK5. This gives a partition of vertices of G\K into
side components of TK5.

Notice that side components, however, can contain a K3,3-subdivision.
Thus, given a graph G with a K5-subdivision TK5, either we can find a
short cut or a 3-corner vertex of TK5 in the graph, or else we can partition
the vertices and edges of G\TK5 into equivalence classes according to the
corresponding side components of TK5 in G.

Every side component H of TK5 contains exactly two corners a and b
corresponding to a side of TK5. If edge ab between the corners is not in H ,
we can add it to H to obtain H +ab. Otherwise H +ab = H. We call ab the
corner edge of H+ab and H+ab an augmented side component of TK5. We
use the following general lemma for side components of a K5-subdivision
in the embedding algorithms. By Lemma 2.4 we can add the corner edge
into every side component H to test easily if there exists an embedding of
H with both corners on the outer face and to find such an embedding.

2.4 Lemma. There is a planar embedding of a graph G with two vertices
u and v on the outer face if and only if there exists a planar embedding of
the graph G + uv.

Proof . It can be seen by drawing any planar embedding on the sphere that
any face of a planar embedding can be considered as an outer face. Now if
there exists an embedding of graph G on the sphere with both vertices u
and v on the same face, then we can just add the edge between them into
the face. Otherwise for any embedding of G on the sphere the edge cannot
be added into the planar embedding. Hence G + uv is not planar.
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3. Algorithm for the Projective Plane

Let G be a non-planar graph with a K5-subdivision TK5. We can use
Propositions 2.1 and 2.2 either to determine if G is projective planar or
toroidal or to find a K3,3-subdivision in it. In this section, we present a
linear time practical algorithm to check if a non-planar graph G is projective
planar or contains a K3,3-subdivision. We begin with a characterization of
projective planarity for graphs with a K5-subdivision.

3.1 Theorem. A graph G with a K5-subdivision TK5 and no short cut or
3-corner vertex of TK5 is projective planar if and only if all the augmented
side components of TK5 are planar graphs.

Proof . By Corollary 2.3, all the vertices and edges of G\TK5 are partitioned
into side components.

Sufficient conditions. Take any embedding of TK5 on the projective
plane (see Fig. 5). For each side of TK5, make a planar embedding of its
side component with both corners on the outer face. By Lemma 2.4 there
exists such an embedding of a side component if and only if the augmented
side component is a planar graph. By Corollary 2.3 we can embed every
side component independently.

Necessary conditions. Fig. 5 shows the two possible non-isomorphic
embeddings of TK5 on the projective plane (see [10] and [12] for details).

Fig. 5, The two embeddings of K5 on the projective plane.

The sides of TK5 must create one of these embeddings, which divides the
projective plane into faces. Each vertex of TK5 appears at most once on
the boundary of any face, and every side of TK5 is incident on exactly
2 faces. Call these faces F1 and F2, and let K be the set of corners of
TK5. For some sides, it is possible that the two corners a and b also appear
on the boundary of a third face, as non-consecutive vertices. But since G
has no short cut or 3-corner vertex of TK5, every connected component
C of G\K, adjacent to a and b and embedded in a third face can also be
embedded in F1 or F2. This shows that it is always possible to embed every
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side component of TK5 in an open disk contained in F1 ∪ F2, i.e. every
augmented side component must be planar. The theorem is proved.

Theorem 3.1 gives us a linear time practical algorithm for graphs with
a K5-subdivision.

Projective Plane Embedding Algorithm for Graphs with a K-
Subdivision.

Input: a graph G

Output: Either a projective planar rotation system of G, or a K3,3-
subdivision in G, or G is not projective planar

1. Use a planarity checking algorithm (eg. [6]) to determine if G is planar.
If G is planar then return its planar rotation system. If G is not planar
and the planarity check returns a K3,3-subdivision in G then return
the K3,3-subdivision in G.

2. G is not planar and the planarity check returned a K5-subdivision TK5

in G. Do a depth-first or breadth-first search to find either a short cut
or a 3-corner vertex of TK5 in G. If a short cut or a 3-corner vertex is
found, then return a K3,3-subdivision in G. If there is no short cut or
3-corner vertex, the depth-first or breadth-first search returns the side
components of TK5.

3. For each augmented side component H of TK5 in G, check if H is
planar. If all the augmented side components are planar, then return
a projective planar rotation system of G. If there is a non-planar
augmented side component of TK5, then return G is not projective
planar.

As every step in this algorithm has linear time complexity, the entire
algorithm is also linear.

4. Algorithm for the Torus

Now consider the torus. Here we describe a linear time practical algorithm
to check if a graph G is toroidal or contains a K3,3-subdivision.

We begin with the 6 embeddings of K5 on the torus, shown as E1, . . . ,
E6 in Fig. 6. Some embeddings have a face whose boundary contains a
repeated vertex or repeated edge. Such a face is labelled F in the dia-
gram. Vertices which are repeated on the boundary of F are shaded black.
Repeated edges are drawn with thicker lines.
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F

F F F

E1 E2 E3

E4 E5 E6

Fig. 6, Embeddings of K5 on the torus.

Let G be a non-planar graph with a K5-subdivision TK5 and no short
cut or 3-corner vertex of TK5 in G. The following propositions and theorem
provide a characterization of toroidality for such graphs.

4.1 Proposition. If G is toroidal, then at most one augmented side com-
ponent of TK5 is non-planar.

Proof . Let G be embedded on the torus. Consider the embeddings of K5

on the torus E1, . . . , E6 of Fig. 6. TK5 must be embedded in one of these
configurations. Let H be any side component with corners a and b. The
vertices of H cannot be adjacent to any part of TK5, except those vertices
on the ab-side. We show that either H + ab is planar, or else all other
augmented side components are planar.

Case 1. TK5 is embedded as E1 or E3 of Fig. 6.

E1 and E3 have the property that each vertex appears at most once on the
boundary of any face. The side ab appears on the common boundary of 2
faces, say F1 and F2. Vertices a and b may also appear as non-consecutive
vertices on the boundary of a third face. We proceed as in Theorem 3.1.
Any portion of H embedded in a third face can be moved to F1 or F2, so
that H can always be embedded in an open disk contained in F1 ∪F2, with
a and b on the outer face of H . Lemma 2.4 implies that H + ab is planar.
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C

a1 b

a2

a1

a2

b

C

Fig. 7, A face with one repeated vertex.

Case 2. TK5 is embedded as E6 of Fig. 6.

The boundary of the face F contains one vertex repeated twice as in Fig. 7.
Without loss of generality, we can assume that a is the repeated corner,
and b is adjacent to a on the boundary of F . Otherwise H + ab would be
planar, as in Case 1. Let C be a part of H embedded in the interior of F .
Let a1 and a2 be the two occurrences of a on the boundary of F , and let
a1 be adjacent to b on the facial foundary. The edges from a2 to vertices
v ∈ C can be replaced by edges from a1 to v, as indicated in the diagram.
This gives a planar embedding of H with a and b on the outer face. Hence
H + ab is planar.

a1

a2

b1

b2

C

Fig. 8, A face with two repeated vertices.

Case 3. TK5 is embedded as E4 of Fig. 6.

The boundary of the face F of E4 has 2 vertices repeated twice as in Fig. 8.
Without loss of generality, we can take one of them to be a. Let its two
occurrences on the facial boundary be a1 and a2. If b is not the other
repeated corner, we can proceed as in Case 2 and H + ab is planar. Hence,
we can assume that b is also repeated. Let its two occurrences be b1 and b2,
where b1 is adjacent to a1 on the facial boundary. Let C be the portion of
H embedded inside F . Each of a2 and b2 must be adjacent to one or more
vertices of C, or else we can proceed as in Case 2, and H + ab is planar.
Having embedded C as shown in Fig. 8, all faces of the embedding now
have no repeated vertices on their boundaries. Consequently, all remaining
augmented side components must be planar, as in Case 1. It follows that
H + ab is the only possible non-planar augmented side component.
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H

a b

a b (ii)

C

a

b

a

b

(i)

Fig. 9, A face with three repeated vertices.

Case 4. TK5 is embedded as E5 of Fig. 6.
The boundary of the face F of E5 has an edge and another vertex repeated
twice as in Fig. 9. If just one corner of the side ab is repeated twice on the
boundary of F , then it is equivalent to Case 2 and H +ab is planar. If both
corners a and b are repeated twice on the boundary of F , but the side itself
appears just once (Fig. 9(i)), we have a case similar to Case 3 and H + ab
is the only possible non-planar augmented side component in G. Suppose
the entire side ab appears twice on the boundary of F , and H is embedded
in F as in Fig. 9(ii). Then we find that after embedding H, any face of
the embedding has at most one repeated corner as in case 2. Consequently,
there can be at most one non-planar augmented side component H + ab.

a b

ba

H

(i) (ii)

a

b b

a

C

Fig. 10, A face with four repeated vertices.

Case 5. TK5 is embedded as E2 of Fig. 6.
The boundary of the face F of E2 has two edges repeated twice as in Fig. 10.
If a and b are endpoints of a repeated edge as in Fig. 10(ii), it is equivalent
to Case 4 in Fig. 9(ii). Otherwise we get the case of Fig. 10(i) equivalent to
Case 3. In both cases, if H +ab is non-planar, then all the other augmented
side components are planar. This completes the proof.

4.2 Corollary. If G is toroidal, then there can be at most one non-planar
side component of TK5.

4.3 Proposition. If all the side components of TK5 in G are planar and
at most one of the augmented side components is non-planar, then G is
toroidal.

Proof . If all the augmented side components are planar, then by Lemma 2.4
we can embed all the side components as planar graphs with two corners
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on the outer face in any of the embeddings of TK5 on the torus.

Suppose one of the augmented side components of TK5, say H + ab,
is not planar. Then it is not possible to embed the corresponding planar
side component H into an open disk with both corners a and b on the
boundary. However, there are two embeddings of TK5 on the torus (E2

and E5 of Fig. 6) with a side appearing exactly twice on the boundary of a
face. Denote such a face by F . The face F is indicated in the diagram of E2

and E5 of Fig. 6, and a side which appears twice is drawn in bold. A face
F with a side appearing twice on its boundary defines a cylinder. We can
create a cylindrical embedding of the planar graph H as follows. Embed H
on the sphere, and cut a small open disk which touches a from the interior
of a face having a on its boundary, and cut another open disk which touches
b from the interior of a face having b on its boundary. This converts the
sphere into a finite cylinder. Now H contains an ab-path, namely the side
ab of TK5. Cut the cylinder along this ab-path to convert it into an open
disk with a repeated ab-path on its boundary. This cylindrical embedding
of H can then be placed in the face F of the TK5 embedding E2 or E5

of Fig. 6. Any planar rotation system of H provides such a cylindrical
embedding of the side component H, and vice versa.

Since all the other augmented side components of TK5 are planar, by
Lemma 2.4 any side component different from H can be embedded in an
open disk with both corners on the outer face. This completes the proof.

We now consider graphs G with non-planar side components of TK5.
Before we give an equivalent of Theorem 3.1 for the torus, we show two
families of graphs which can be considered as combinations of two K5-
subdivisions having at most one side in common. One family is presented
in Fig. 11 and another in Fig. 12.

N1

N2 N3

Fig. 11, Non-toroidal graphs N1,N2, N3.
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4.4 Lemma. None of graphs N1, N2 or N3 of Fig. 11 can be embedded
on the torus.

Proof . Consider all embeddings of K5 on the torus (see Fig. 6). Clearly,
it is not possible to embed a non-planar component K5 into an open disk.
Therefore we can not complete any of the embeddings of Fig. 6 to graph
N1. Now to extend one of the embeddings of Fig. 6 to N2, it is necessary
to embed K4 into a face equivalent to an open disk and then add edges
between all vertices of K4 and one corner on the boundary of the face. Since
K4 is not outer-planar, it is not possible to do so without edge crossings.
Therefore N2 is non-toroidal. Finally, to extend one of the embeddings of
Fig. 6 to N3, we need to embed K4 into a face equivalent to an open disk
and then add edges between all four vertices of K4 and two corners on the
boundary of the face. Since K4 is not outer-planar, it can not be done
without edge crossings. Therefore N1, N2 and N3 are not toroidal.

M

Fig. 12, Toroidal graph M .

It can be seen that we can complete some of the embeddings of K5

on the torus to an embedding of graph M of Fig. 12. We must add a K3

into one of the faces of an embedding of K5, and join each vertex of K3

to 2 corners of K5. This can be done in several ways (using E2, E4 or
E5 of Fig. 6) . Notice that any embedding of M on the torus has similar
properties to the embeddings of K5 on the projective plane. We state them
in the following lemma.

4.5 Lemma. In any embedding of the graph M on the torus, every vertex
of M appears at most once on the boundary of any face of the embedding
and every edge of M is on the boundary of exactly two faces.

We omit a proof of Lemma 4.5 because of the number of technical
details. The proof is done by adding a triangle into a face of the torus
embeddings of K5 (E2, E4 and E5 of Fig. 6) and all edges between the
triangle and two corners of K5 in all possible ways.

The graph M can be viewed as two K5’s with one edge identified. Let
TM be a subdivision of M . TM contains two K5-subdivisions, TK ′

5 and
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TK′′
5 , with one side in common. A corner of TM is a corner of any of the

two TK5’s. A side of TM is a side of any of the TK5’s. A vertex of TM
is called inner if it is an inner vertex in any of the TK5’s.

Now suppose graph G has TM as a subgraph and there is no short cut
or 3-corner vertex of any of two corresponding TK5’s of TM in G. Then
TK′

5 is contained in a side component of TK ′′
5 in G and vice versa. As

in Proposition 2.2, let K be the set of corners of TM . We define a side
component of TM as a subgraph in G induced by a pair of corners a and
b of TK ′

5 or TK ′′
5 in TM and all connected components of G\K adjacent

to a and b. Clearly, any two side components of TM can intersect just in
the common corner of TM if one exists. An augmented side component
of TM is defined as before. Clearly, Lemma 2.4 holds as well for the side
components of TM .

The next proposition provides an alternative proof of Corollary 4.2.

4.6 Proposition. If there is more than one non-planar side component
of TK5 in G, then G is not toroidal.

Proof . Two side components each containing a subdivision of K5 or K3,3

can intersect in at most one vertex. Therefore G contains as a minor one
of N1, N2 of Fig. 11 or one of the graphs of Fig. 13. This covers all possible
combinations of K5 and K3,3.

N4 N5

N6
N7

Fig. 13, Non-toroidal graphs.

Similar reasoning to Lemma 4.4 shows that graphs N4, N5, N6 and
N7 of Fig. 13 are not toroidal. It is not possible to embed K3,3 into an
open disk. This rules out N4 and N6. Consider N5 and N7 as K3,3 or K5,
respectively, with one vertex adjacent to 3 independent vertices of K2,3.
K2,3 is not outer-planar, yet must be embedded in an open disk. There
is always one vertex of a set of 3 independent vertices of K2,3 that cannot

13



be joined to a vertex on the boundary of the disk. Consequently, it is
impossible to complete an embedding of K3,3 to N5 or K5 to N7. Thus G
has a non-toroidal minor. This proves the proposition.

Therefore it remains to distinguish between toroidal and non-toroidal
graphs in the case of a single non-planar side component. Let H be the
unique non-planar side component of TK5 in G. Denote the corresponding
side of TK5 by h and its corners by a and b. Suppose that H contains a
K5-subdivision TK ′

5 and that there is no short cut or 3-corner vertex of
TK′

5 in G.

4.7 Theorem. Let graph G have a K5-subdivision TK5 with no short
cut or 3-corner vertex in G. Let there be one non-planar side component H
of TK5 which contains a K5-subdivision TK ′

5 with no short cut or 3-corner
vertex in G. Then G is toroidal iff TK5 and TK′

5 have two common corners,
and TK5 ∪ TK ′

5 contains an M -subdivision TM all of whose augmented
side components in G are planar.

Proof . Sufficient conditions. In any embedding of TM on the torus, for each
side of TM construct a planar embedding of its side component with both
corners on the outer face. By Lemma 2.4 there exists such an embedding
of a side component if and only if the augmented side component is a
planar graph. Clearly, we can embed every side component independently
to obtain an embedding of G.

Necessary conditions. We consider all possible cases of intersection of
TK5 and TK′

5 in G. If TK5 ∩ TK ′
5 = Ø, then G has minor N1 of Fig. 11

and G is not toroidal.

If TK5 ∩ TK ′
5 6= Ø, let h be the side of TK5 which is contained in a

non-planar side component H, and let a and b be the corners of H. Denote
by x the vertex of h ∩ TK ′

5 closest to a on side h and by y the vertex
of h ∩ TK ′

5 closest to b on side h. If x = y, then G has minor N2 of
Fig. 11, obtained by possibly contracting the edges of a path, and so G is
not toroidal. So, x 6= y.

Without loss of generality, suppose x 6= a. The following cases are
possible.

1) x is an inner vertex on a side of TK ′
5.

If y is on the same side of TK′
5 as x, then G contains minor N3 of

Fig. 11 and G is not toroidal. Otherwise y is on a different side of TK ′
5,

and TK5 contains a short cut of TK ′
5 in G with endpoints x and y – a

contradiction since G has no short cut of TK5 or TK′
5.

2) x is a corner of TK ′
5.

If y is on the same side of TK ′
5 as x, then G contains a minor N3 of

Fig. 11 and G is not toroidal. Otherwise y is on a different side of TK ′
5.
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Then y is an inner vertex of TK′
5 and TK5 contains a short cut of TK′

5 in
G with endpoints x and y – a contradiction.

Hence x = a and y = b. Now suppose x or y is an inner vertex of TK ′
5.

If x and y are on the same side of TK′
5, we have a minor N3 of Fig. 11 in G

and G is not toroidal. If x and y are on different sides of TK′
5, then TK5

contains a short cut of TK ′
5 in G – a contradiction. Thus x and y are both

corners of TK′
5.

Without loss of generality we can substitute the side h of TK5 by the
side between x and y in TK′

5. Clearly, the substitution does not create any
short cut or 3-corner vertex of TK5 in G and it does not affect the side
components of TK5 in G. On the other hand, TK5 and TK ′

5 now have
a common side and give us an M -subdivision TM in G. Clearly, Lemma
2.4 holds for the side components of TM in G too. By using Lemma 4.5,
the same reasoning as in Theorem 3.1 shows that an embedding of TM on
the torus can be extended to G iff all the side components of TM in G are
planar with both corners on the outer face. A non-planar augmented side
component of TM in G can not be added into any of the embeddings of
TM on the torus. This completes the proof.

Propositions 4.1 and 4.3 as well as Theorem 4.7 give us a linear time
practical algorithm for graphs with a K5-subdivision.

Torus Embedding Algorithm for Graphs with a K-Subdivision.

Input: a graph G

Output: Either a toroidal rotation system of G, or a K3,3-subdivision
in G, or G is not toroidal

1. Use a planarity checking algorithm (eg. [6]) to determine if G is planar.
If G is planar then return its planar rotation system. If G is not planar
and the planarity check returns a K3,3-subdivision in G then return
the K3,3-subdivision in G.

2. G is not planar and the planarity check returned a K5-subdivision TK5

in G. Do a depth-first or breadth-first search to find either a short cut
or a 3-corner vertex of TK5 in G. If a short cut or 3-corner vertex is
found, then return a K3,3-subdivision in G. If there is no short cut or
3-corner vertex, the depth-first or breadth-first search returns the side
components of TK5.

3. If there are two non-planar augmented side components of TK5 in
G, then return G is not toroidal. If there is at most one non-planar
augmented side component of TK5 and the corresponding side com-
ponents of TK5 in G is planar, then return a toroidal rotation system
of G.
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4. There is exactly one non-planar side component of TK5 in G. If the
planarity check for the side component returned a K3,3-subdivision,
then return the K3,3-subdivision in G. If the planarity check for the
side component returned a K5-subdivision TK ′

5, then do a depth-first
or breadth-first search to check if there is a short cut or a 3-corner
vertex of TK ′

5 in G. If a short cut or a 3-corner vertex of TK ′
5 is

found, then return a K3,3-subdivision in G.

5. Check if TK5 and TK′
5 have two common corners. If they do not have

two common corners, then return G is not toroidal. If they do have
two common corners, then construct an M -subdivision TM in G. Find
the side components of TM using a depth-first or breadth-first search.

6. For each augmented side component of TM in G, check if it is pla-
nar. If all the augmented side components are planar, then return a
toroidal rotation system of G. If there is a non-planar augmented side
component of TM , then return G is not toroidal.

Every step in this algorithm has linear time complexity, so the entire
algorithm is linear. It can be easily implemented using a planarity checking
algorithm and breadth-first or depth-first searches to find the side compo-
nents.

5. Conclusion

The algorithms presented here simplify algorithms in [7], [10] and [12]. Also,
they are easy to implement. By using the first algorithm, we exclude 27
initial labelled embeddings of K5 and consider just the remaining 6 labelled
embeddings of K3,3 on the projective plane in [10] and [12]. By using the
second algorithm, we exclude 6 unlabelled embeddings of K5 and need to
consider just 2 unlabelled embeddings of K3,3 on the torus for [7].

We do not know of any implementation of the algorithms of [7] and
[10], nor of their generalization in [11]. The most efficient implemented
algorithms we know of are presented in [12] and [13]. We hope to develop
our ideas and techniques to devise practical and more efficient general al-
gorithms. Also, the approach of excluding K5-subdivisions can likely be
generalized for graph embedding algorithms in oriented and non-oriented
surfaces of higher genus.

Acknowledgement. The authors are thankful to W.Myrvold for her valu-
able discussions and communications.
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