
July, 1999

This paper appeared in

Bulletin of the Institute of Combinatorics and its Applications 27 (1999), 19-25.

An Algorithm for Drawing a Graph Symmetrically

Hamish Carr and William Kocay*
Computer Science Department

St. Paul’s College, University of Manitoba
Winnipeg, Manitoba, CANADA, R3T 2N2

e-mail: bkocay@cs.umanitoba.ca, hcarr@cs.ubc.ca

Abstract
A technique is described that produces symmetric drawings of a graph

G in the plane. The method requries that G have a non-trivial automor-
phism group Aut(G), and that a non-trivial symmetry g ∈ Aut(G) has
been selected in some way. The technique is found to be very effective in
practice. It forms a part of the Groups & Graphs** software package.

1. Symmetric Cycles

Let G be a connected undirected simple graph on n vertices V (G). If
u, v ∈ V (G), then u → v means that u is adjacent to v (and so also v → u).
The reader is referred to [1] for other graph-theoretic terminology. Let
Aut(G) denote the automorphism group of G. Given a permutation g ∈
Aut(G), it is often possible to draw G is such a way that the symmetry g
is evident in the drawing. For example, there are 3 well known drawings of
the Petersen graph, each illustrating a different symmetry.

Fig. 1, 3 views of the Petersen graph

* This work was supported by an operating grant from the Natural Sciences and Engi-

neering Research Council of Canada.

** Groups & Graphs is available on the internet, from http://bkocay.cs.umanitoba.ca/G&G

/G&G.html

1

In this article we describe a simple algorithm that constructs a symmetric
drawing of a graph, given a permutation g ∈ Aut(G).

The drawing produced will depend very much upon g. If g is a single
transposition, say g = (1,2), then it will not be possible to construct a
symmetric drawing without more information. Therefore we assume that
g has been selected in such a way that a symmetric drawing is possible.
One way to choose g is to look for permutations that contain several cycles
of the same length, eg., g = (A, B, C, D)(P,Q, R, S)(W, X,Y,Z). In what
follows we assume that g has at least k cycles C1, C2, . . . , Ck, each of length
m, where k ≥ 1 and m ≥ 2. There may be other cycles as well, but we
focus on these k cycles of length m. If v ∈ Ci, then we write v + j for
the jth vertex following v in Ci. Thus the vertices of Ci can be written as
(v, v+1, v+2, . . . , v +m−1), in cyclic order. The next vertex, v +m would
be equal to v, since calculations are performed modulo m. If u, v ∈ Ci, we
write u− v for the integer j such that v + j = u. This notation avoids the
use of cumbersome subscripted subscripts. The algorithm is based on the
following simple but extremely useful lemma.

1.1 Lemma. Suppose that C1, C2, . . . , Ck contain vertices v1, v2, . . . , vk,
respectively, such that vi → vi+1 for i = 1, 2, . . . k − 1, and that vk → v′1 ∈
C1, where v′

1 6= v1. Then G contains a cycle C of length km/gcd(m,d),
where d = v′

1 − v1.
Proof . Let the vertices of C1 be (v1, v1 +1, . . . , v1 +m− 1), in cyclic order.
Let d = v′

1 − v1. Since v1 → v2 and since g is a symmetry of G, we know
that v′

1 → v′
2 = v2 + d. Similarly, v′

2 → v′
3 = v3 + d, etc. This sequence of

adjacencies returns to C1 every k steps. After m/gcd(m,d) such sequences
of k steps, it will return to v1. This creates a cycle C in G of length
km/gcd(m, d).

In fact, if gcd(m, d) = i > 1, G contains i vertex-disjoint cycles, all of
the same length. Notice that g permutes these cycles in cyclic order, and
that gi rotates each cycle through k/i vertices. These cycles are termed
symmetric cycles . If d and m are relatively prime, there is one cycle C of
maximum possible length km. The first part of the algorithm is to find
a symmetric cycle C of largest possible length. To this end, we utilise a
recursive search.

2. The Algorithm

The first step is to construct the cyclic representation of g and to classify
its cycles according to their length. Let the cycles be C1, C2, . . . , Cp (of all
lengths). For each cycle Ci we select some v ∈ Ci as its representative, in
order to identify the cycles. v is most easily chosen as the first vertex of Ci

2

encountered. We keep two arrays, theCycle[u] and theIndex [u]. As we run
through the points of Ci, we set

theCycle[u] = v, the representative of Ci, and
theIndex [u] = j, where u is the jth vertex of Ci.

In case v = theCycle[v], so that v is a cycle representative, we use theIn-
dex[v] = length of Ci, to store the length of the cycle.

With these variables we can easily tell whether two vertices u and w
are in the same cycle (just test whether theCycle[u] = theCycle[w]). If
they are in the same cycle, we can determine the distance between them,
as theIndex [u] − theIndex [w]. We can also tell the length of the cycle as
theIndex [theCycle [u]]. These arrays can be constructed in O(n) steps, with
one for-loop. As the algorithm progresses, the cycles will be marked either
“visited”or “unvisited”. This can be done by marking the representative of
each cycle.

We will also use an array P to store the vertices of the current path
being constructed. Here P [i] is the ith vertex of the path, where i = 1, 2,
The length of P is `(P), the number of vertices currently on P . The main
program runs through the cycles Ci. It takes the representative vertex v of
Ci, marks Ci “visited”, and begins building a path P from v such that all
vertices of P are in different cycles of the same length. It calls a recursive
procedure ExtendPath(v) to build P . ExtendPath returns true if it finds
a cycle of maximum possible length. The representative of the cycle Ci

from which the path begins is stored in a variable called the baseCycle.
The length of this cycle is stored as baseLength. The path P is required
to contain vertices from cycles of this length only. If there are k cycles of
length m, the maximum possible cycle length is km. We store this value as
maxLength[m]. We also store variables bestCyclesSize and bestGCD which
contain the length of the longest cycle found so far, and the gcd(m, d) for
this cycle.

The calling procedure to find a cycle follows.

bestCycleSize := 0 { no cycle has yet been found }
for v := 1 to n do begin

if v =theCycle [v] then begin
{ v is a cycle representative }
baseCycle := v
baseLength := theIndex [v]
{ only consider cycles of this length }
if baseLength > 1 then begin

{ begin a new path }
P [1] := v

3

`(P) := 1
mark v visited
done := ExtendPath (v)
{ leave the cycle marked visited, so it will not be used again. }
{ Since this cycle is not allowed in future paths, }
{ decrease the maxLength for this baseLength }
maxLength[baseLength] := maxLength[baseLength] − baseLength

end
end

end
{ bestCycleSize now contains the longest cycle found }

The recurscve procedure ExtendPath follows.

ExtendPath(u: vertex)
{ P has length `(P) ≥ 1. Extend it from vertex u }
begin

for all v → u do begin
k := theCycle [v]
{ v is in a cycle Ck with representative k }
d := theIndex [v] { d = length of Ck }
if d = baseLength then begin

if Ck has not been visited then begin
add v to P , increment `(P)
mark v visited
if ExtendPath(v) then return(true)
mark v unvisited { reset for next iteration }
remove v from P , decrement `(P)

end
else if Ck equals baseCycle then begin

{ back to the starting cycle }
if v = theCycle [v] then begin

{ back to starting point on first return to base cycle }
{ don’t accept these cycles unless there is nothing longer }
if `(P) ≤ bestCycleSize then goto 1 { try next v }
if `(P) = 2 then goto 1 { a “cycle”of length 2 – ignore }
save P in bestPath, save d in bestGCD
save `(P) in bestCycleSize
goto 1 { try next v }

end
g := gcd(d, baseLength)
{ calculate the length of the grand cycle C }
`(C) := `(P)∗ baseLength/g

4

{ take the longest possible cycle with largest possible gcd }
if `(C) < bestCycleSize then goto 1 { too short – ignore }
if `(C) = bestCycleSize then if g ≤ bestGCD then goto 1
save P in bestPath, save g in bestGCD
save `(C) in bestCycleSize
{ we may have found the longest possible cycle }
if `(C) = maxLength[d] then return(true)

end
1: { try next vertex v }
end
return(false) { no maximum length cycle was found }

end { ExtendPath }

3. Sample Drawings

Some drawings of the 4-cube Q4 produced by this algorithm are illustrated
in Figures 2, 3 and 4. They were obtained by inputting different symmetries
to the algorithm. The symmetry chosen as input is also shown. If the
algorithm finds a symmetric cycle C containing all vertices of G, then the
drawing produced is usually very aesthetic (see Figure 2). The vertices of
the cycle are arranged in a circle. If gcd(m, d) > 1 there will be more than
one cycle (see Figure 3). The algorithm will then arrange the vertices of
the cycles in concentric circles. In Figure 3 the vertices of the inner cycle
have been manually re-arranged into a star instead of taking them in cyclic
order.

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

6

(1,8,6,3)(2,4,5,7)(9,13,15,11)(10,12,16,14)

Fig. 2, View 1 of the 4-cube Q4.

5

If there are some vertices not contained in the cycle(s) found, then
they will be placed in the interior of the circles (see Figure 4). There are
various heuristics that one could use to automatically place vertices that
are not part of the cycles found. In practice it is usually easy to adjust
these manually so long as there are few of them.

1

5

1314

15

10

3 4

8

12

6

16

11

7

9

2

(1,12,9,10,15,7,6,5)(2,13,4,11,16,3,14,8)

Fig. 3, View 2 of Q4.

1

12

13

5

6

7

8
16

9

4

3

2

11

14

15

10

(1,5,8,4)(2,13,7,9)(3,12,6,16)(10,11,14,15)

Fig. 4, View 3 of Q4.

6

As currently programmed, the algorithm requires that a symmetry be
input. This kind of control over the algorithm is necessary if one wants
to construct drawings highlighting a certain symmetry. If one wants to
automate the process further, one way to do it would be to use an algorithm
which finds the conjugacy classes of Aut(G), and then selects a permutation
from one of the conjugacy classes, so that a particular cycle structure is
chosen, eg, the largest possible number of vertices lie in cycles of the same
length. Permutations of this type are often found to produce very good
drawings in practice. However conjugacy classes can be difficult to compute.
A method that works well in practice is to select a number of random
permutations from Aut(G) and count the number of points in cycles of
the same length. Select a permutation that gives the largest possible such
count, with the largest possible cycle length. Many variations are possible.

References

1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications , Amer-
ican Elsevier Publishing, New York, 1976.

2. William Kocay, “Groups & Graphs, a Macintosh application for graph
theory”, Journal of Combinatorial Mathematics and Combinatorial
Computing 3 (1988), 195-206.

7

