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Abstract

We define a butterfly factorization for the complete graph
K2n and give a construction for all values of n

1 Introduction

Recently, a problem in design theory required us to use a factoriza-
tion of K8 of the following type.

37 46 58 12 35 47 68

18 26 57 34 15 28 67

17 24 38 56 13 27 48

16 23 45 78 14 25 36

The central pair (in bold) of each row forms the body of a “but-
terfly”, with a left and right “wing”. There are 8 one-factors, each
consisting of a body along with either a left wing or a right wing.
All pairs occur, since there are n bodies and each body, along with
its two wings, uses 2n− 1 pairs.

Note that in the traditional one-factorization there are 2n − 1
one-factors, each containing n pairs; in the butterfly factorization,
there are n butterflies, each containing 2n − 1 pairs.

This factorization of K8 was easily found experimentally, and an
analogous factorization for K6 is even easier to produce, namely,
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36 45 12 35 46

16 25 34 15 26

14 23 56 13 24

Obviously, this butterfly factorization of K6 is unique.
Since the number of ordinary one-factorizations of K2n increases

very rapidly with n, it seemed likely that a butterfly factorization
could be obtained for arbitrary n.

2 Construction for the case of K2n, n odd

Write down the points of Kn twice; in the first line, these are written
as

1 2 3 . . . n,

and in the second line they are written as

n+ 1, n+ 2, n + 3, . . . , n+ n.

The pairs (1, n+ 1), (2, n + 2), (3, n + 3), . . . , (n, n+ n) will form
the n butterfly bodies.

Now write down a near one-factorization ofKn, using the symbols
1, 2, . . . , n. This will produce n sets, each set comprising (n − 1)/2
pairs and a singleton, the singletons all being different.

Let this near one-factorization be

(u1, u2), (u3, u4), . . . , (ut−1, ut), i,

We then construct the butterfly with body (i, n + 1) by placing
(uj , uj+1) and (uj + n, uj+1 + n) in one wing and (uj , uj+1 + n) and
(uj+1, uj + n) in the other wing.

Two examples will make the procedure clear.

Example 1. K10.
The K5 is on 1,2,3,4,5, and the near one-factorization is:

(2, 3), (4, 5), 1 (1, 4), (3, 5), 2 (1, 5), (2, 4), 3

(1, 3), (2, 5), 4 (1, 2), (3, 4), 5
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We then apply the algorithm described and obtain

(2, 3) (7, 8) (4, 5) (9, 10) (1,6) (2, 8) (3, 7) (4, 10) (5, 9)

(1.4) (6, 9) (3, 5) (8, 10) (2,7) (1, 9) (4, 6) (3, 10) (5, 8)

(1, 5) (2, 4) (6, 10) (7, 9) (3,8) (1, 10) (5, 6) (2, 9) (4, 7)

(1, 3) (2, 5) (6, 8) (7, 10) (4,9) (1, 8) (3, 6) (2, 10) (5, 7)

(1, 2) (3, 4) (6, 7) (8, 9) (5,10) (1, 7) (2, 6) (3, 9) (4, 8)

Example 2. K14.
The firstK7 is on symbols 1,2,3,4,5,6,7, and the near one-factorization

is

(2, 7), (3, 6), (4, 5), 1 (1, 3), (4, 7), (5, 6), 2

(2, 4), (1, 5), (6, 7), 3 (3, 5), (2, 6), (1, 7), 4

(4, 6), (3, 7), (1, 2), 5 (5, 7), (1, 4), (2, 3), 6

(1, 6), (2, 5), (3, 4), 7

Apply the algorithm to give the following butterfly factorization.

(2, 7) (9, 14) (3, 6) (10, 13) (4, 5) (11, 12) (1,8) (2, 14) (7, 9) (3, 13) (6, 10) (4, 12) (5, 11)

(1, 3) (8, 10) (4, 7) (11, 14) (5, 6) (12, 13) (2,9) (1, 10) (3, 8) (4, 14) (7, 11) (5, 13) (6, 12)

(2, 4) (9, 11) (1, 5) (8, 12) (6, 7) (13, 14) (3, 10) (2, 11) (4, 9) (1, 12) (5, 8) (6, 14) (7, 13)

(3, 5) (10, 12) (2, 6) (9, 13) (1, 7) (8, 14) (4, 11) (3, 12) (5, 10) (2, 13) (6, 9) (1, 14) (7, 8)

(4, 6) (11, 13) (3, 7) (10, 14) (1, 2) (8, 9) (5, 12) (4, 13) (6, 11) (3, 14) (7, 10) (1, 9) (2, 8)

(5, 7) (12, 14) (1, 4) (8, 11) (2, 3) (9, 10) (6, 13) (5, 14) (7, 12) (1, 11) (4, 2) (2, 10) (3, 9)

(1, 6) (8, 13) (2, 5) (9, 12) (3, 4) (10, 11) (7, 14) (1, 13) (6, 8) (2, 12) (5, 9) (3, 11) (4, 10)

3 Construction for K2n, n ≡ 0, modulo 4.

We start by considering n even. It will be convenient to use symbols
0, 1, . . . , 2n − 1 when n is even and to use the set of bodies as the
pairs (i, n+ i) as i ranges from 0 to n. We first suppose that we have
a wing to attach to (0, n) and that this wing contains (n − 1) pairs
(i, j) where i− j takes on all the values 1, 2, . . . , n− 1, modulo 2n.

If such a wing is possible, we have 2n − 2 symbols available for
i and j, with n of these being odd (1, 3, 5, . . . , 2n − 1) and n − 2
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being even (2, 4, . . . , n− 2, n+ 2, . . . , 2n− 2). We wish to pair these
symbols so as to have differences 1, 2, . . . , n − 1. Of these differ-
ences, n/2 are odd and n/2− 1 are even. To get the odd differences,
we must use n/2 odd numbers and n/2 even numbers. This leaves
n/2 odd numbers and n/2 − 2 even numbers to form even differ-
ences. But even differences require pairs in which both elements of
the pair have the same parity. Hence n ≡ 0, modulo 4, and the
n/2 odd numbers produce n/4 even differences, whereas the n/2− 2
even numbers produce n/4−1 even differences. Thus the total num-
ber of even differences is n/2−1, as required. We state our results as

Lemma 1. If (0, n) has a wing comprising pairs (i, j) where i − j
assumes all values 1, 2, . . . , n− 1, then n ≡ 0 modulo 4.

If the condition of Lemma 1 is satisfied, then the other wing
attached to the body (0, n) is simply the set of pairs (i + n, j + n),
and the total butterfly factorization can be obtained from this one
butterfly by adding the numbers 1, 2, 3, . . . , n−1, successively, to the
initial butterfly.

We first give a simple example for 2n = 8, and then provide a
general solution for n = 4t.

Example 3. 2n = 8.
It is easy to write down one wing to accompany the body (0, 4)

as (1, 2), (5, 7), (3, 6). Then the initial butterfly is (remember that
we are working mod 8):

(5, 6) (1, 3) (7, 2) (0,4) (1, 2) (5, 7) (3, 6)

The other butterflies are obtained by successive additions of unity
to give

(6, 7) (2, 4) (0, 3) (1,5) (2, 3) (6, 0) (4, 7)

(7, 0) (3, 5) (1, 4) (2,6) (3, 4) (7, 1) (5, 0)

(0, 1) (4, 6) (2, 5) (3,7) (4, 5) (0, 2) (6, 1)

Consider now the general case 2n = 8t (i.e., n ≡ 0 (mod 4)).
We need merely create the first wing that is attached to (0, n). We
want all differences 1, 2, . . . , 4t− 1, modulo 8t.
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First, take the pairs (i, 4t − i) where i ranges from 1 to 2t − 1.
This produces even differences 4t− 2i that range from 2 to 4t− 2.

Then take differences (4t+ k, 8t − k + 1) where k ranges from 2
to t− 1. This produces odd differences 4t− 2k + 1 that range from
4t − 3 to 2t + 3. Then take pairs (6t − i, 6t + i + 3) where i ranges
from 0 to t−2. This produces odd differences 2i+3 that range from
3 to 2t− 1.

We now have all differences except 1, 4t−1 and 2t+1. We obtain
difference 1 from the pair (5t, 5t + 1). The difference 4t − 1 arises
from the pair (2t, 6t+1), since 4t− 1 ≡ −(4t+1), mod 8t, so that it
represents the same difference. The difference 2t+ 1 arises from the
pair (4t+ 1, 6t + 2).

Example 4. 2n = 64 (t = 8).
The initial body is (0, 32). The successive sets of pairs in the

algorithm just described are:

(1, 31), (2, 30), (3, 29), . . . , (15, 17) [30, 28, . . . , 2]

(34, 63), (35, 62), . . . , (39, 58) [29, 27, . . . , 19]

(48, 51), (47, 52), . . . , (42, 57) [3, 5, . . . , 15]

(40, 41), (16, 49), (33, 50) [1, 31, 17]

The numbers in square brackets are the differences.
Once one has this wing, the other wing is obtained by adding

32 (mod 64), and the other butterflies are obtained, as in Example
3, by successive additions of unity. It can be verified that in gen-
eral, the 4t − 1 pairs described above contain each of the numbers
1, 2, . . . , 4t − 1, 4t + 1, . . . , 8t − 1, exactly once. We have seen that
they contain all the required differences. This gives:

Lemma 2. When n ≡ 0 (mod 4), K2n has a butterfly factorization.

4 Construction for K2n, n ≡ 2 (mod 4)

We now handle the remaining possibilities: n ∈ {6, 10, 14, 18, . . .}.
Thus 2n is of the form 4t, where t is an odd integer greater than
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one. By Lemma 1, it is not possible to construct a single wing
containing all differences, and then successively add one to obtain the
remaining butterflies. We will show that it is possible to construct
two butterflies which together contain all differences exactly twice.
We will then successively add one to the initial butterflies to obtain
the factorization.

We start with an example.

Example 5. K12 (4n = 12, n = 3).
Take the bodies as (0,6), (1,7), (2,8), (3,9), (4,10), (5,11). Create

a wing for (0,6) as follows.

(0,6), (2, 3), (8, 9), (1, 4), (5, 10), (7, 11).

Note that we have differences 12,3,4,5.
Add 3 to each number to create a partial butterfly

(3,9), (5, 6), (0, 11), (4, 7), (1, 8), (2, 10)

Add 3 again to give

(0,6), (8, 9), (2, 3), (7, 10), (4, 11), (1, 5)

and then interchange symbols 3 and 9 with 0 and 6, respectively, to
create

(3,9), (8, 6), (2, 0), (7, 10), (4, 11), (1, 5)

This creates the missing difference 2 (twice). We now have each of
the differences 1, 2, 3, 4, 5 exactly twice in the wings occurring with
the body (3, 9). It would have been possible to have the first wing
missing the difference 4 rather than 2 (if so, the symbols 6 and 0
would be used as replacements so as to create difference 4). We now
have a complete butterfly for (3,9).

(6, 8) (0, 2) (7, 10) (4, 11) (1, 5) (3,9) (5, 6) (0, 11) (4, 7) (1, 8) (2, 10)

Add 3 again to the left wing just created in order to obtain the left
wing for the first wing created for (0,6); this gives a second butterfly

(9, 11) (3, 5) (1, 10) (2, 7) (4, 8) (0,6) (2, 3) (8, 9) (1, 4) (5, 10) (7, 11).

It also has each of the differences 1, 2, 3, 4, 5 exactly twice in its
wings. These two basic butterflies produce the other four butterflies
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by adding 1 and 2 to each (1 to n − 1, in general). Our complete
factorization is thus:

(9, 11) (3, 5) (1, 10) (2, 7) (4, 8) (0,6) (2, 3) (8, 9) (1, 4) (5, 10) (7, 11)

(0, 10) (4, 6) (2, 11) (3, 8) (5, 9) (1,7) (3, 4) (9, 10) (2, 5) (6, 11) (0, 8)

(1, 11) (5, 7) (0, 3) (4, 9) (6, 10) (2,8) (4, 5) (10, 11) (3, 6) (0, 7) (1, 9)

(6, 8) (0, 2) (7, 10) (4, 11) (1, 5) (3,9) (5, 6) (0, 11) (4, 7) (1, 8) (2, 10)

(7, 9) (1, 3) (8, 11) (0, 5) (2, 6) (4,10) (6, 7) (0, 1) (5, 8) (2, 9) (3, 11)

(8, 10) (2, 4) (0, 9) (1, 6) (3, 7) (5,11) (7, 8) (1, 2) (6, 9) (3, 10) (0, 4)

This example shows that we need merely create the first body
and wing, starting from (0, 2n) with pairs (n−1, n) and (3n−1, 3n),
and using the other symbols to create pairs with all differences 2 to
2n−1, omitting difference n−1 (or difference n+1). The algorithm
of Example 5 can then proceed.

Our initial body is (0,2n).
It will be convenient to write n − 1 = 2a. Then we create our

general pairs as follows:

(a) (n, n − 1) and (3n − 1, 3n) give difference [1] twice, where we
use square brackets to denote differences.

(b) Pairs (i, 2n − i) produce differences [2n − 2i] where i ranges
from 1 to a; this produces all even differences from [2n − 2]
down to [2n− 2a] = [n+ 1].

(c) Pairs (2n+ a+ i, 2n+ a+ 3i) produce all even differences [2i]
from [2] up to [n− 5] as i ranges from 1 to a− 2.

(d) Pairs (2a−i, n+i) produces odd differences [n−2a+2i] = [2i+1]
ranging from [3] to [n− 2] as i ranges from 1 to a− 1.

(e) Pairs (2n+ a− i, 3n + a+ i) produces odd differences [n+ 2i]
ranging from [n] to [2n− 3] as i ranges from 0 to a− 1.

(f) Difference 2n− 1 is produced from the pair (n+ a, 3n+ a− 1).
Difference n− 3 is produced from the pair (3n+ 2, 4n − 1).

We now have the differences 12, 2, . . . , 2n−1, except for the even
difference n− 2. The pairs occurring with the body (0,2n) contain
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all numbers 1, 2, . . . , 2n − 1, except for n. We give an example for
the creation of the first wing for the case n = 9 (K36) (a = 4).

Example 6. Initial body (0,18).

(a) Pairs (8,9) and (26,27).

(b) Pairs (1,17), (2,16), (3,15), (4,14).

(c) Pairs (23,25), (24,28).

(d) Pairs (7,10), (6,11), (5,12).

(e) Pairs (22,31), (21,32), (20,33), (19,34).

(f) Pairs (13,30), (29,35).

We now add n to each number to obtain an initial wing for the
body (n,3n) having the same differences. We add n again to obtain
another set of pairs for the body (2n,0). Interchange the symbols n
and 3n with 0 and 2n, respectively. This gives the second wing for
the body (n,3n). The pairs containing 0, n, 2n, or 3n are (3n, 3n−1)
and (n− 1, n), which become (2n, 3n − 1) and (n− 1, 0) after inter-
changing symbols. This changes the differences [12] to [22]. Thus the
two wings for (n,3n) together contain each difference exactly twice.
We now add n again to obtain the second wing for (0,2n). Its two
wings also contain each difference exactly twice. By successively
adding 1, 2, . . . , n − 1 we obtain a complete butterfly factorization.
This gives:

Lemma 3. When n ≡ 2 (mod 4), K2n has a butterfly factorization.

5 An Alternative for K4t

The algorithm in Section 4 is not restricted to the particular begin-
ning wing used for the general proof. Examples of a different initial
wing are given in this section.

K20: (0,10) (4, 5) (14, 15) (11, 13) (3, 6) (1, 7) (8, 16) (9, 18) (2, 17)
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K28: (0,14) (6, 7) (20, 21) (11, 22) (12, 24) (13, 26) (16, 18) (15, 19)

(2, 23) (3, 25) (1, 10) (4, 9) (5, 8) (17, 27)

K36: (0,18) (8, 9) (26, 27) (14, 28) (15, 30) (16, 32) (17, 34) (1, 13)

(22, 35) (21, 23) (20, 24) (19, 25) (4, 29) (2, 31) (5, 33) (3, 12)

(6, 11) (7, 10)

6 Concluding Remarks

We pointed out earlier that the butterfly factorization ofK6 is unique.
The number of non-isomorphic butterfly factorizations for K8 is very
limited, but the number increases rapidly for K2n as n increases.
For example, the number of non-isomorphic butterfly factorizations
of K2n (n odd) is certainly at least as great as the number of non-
isomorphic one-factorizations of Kn+1, in virtue of the construction
used in Section 2.
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