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Abstract
Let G be a simple, undirected graph. A special network N, called a
balanced network, is constructed from G such that maximum matchings
and f-factors in G correspond to maximum flows in N.  A max-balanced-
flow-min-balanced-cut theorem is proved for balanced networks.  It is
shown that Tutte’s Factor Theorem is equivalent to this network flow
theorem, and that f-barriers are equivalent to minimum balanced edge-
cuts.  A max-balanced-flow algorithm will solve the factor problem.

1.  Balanced Networks.
Let G be a simple graph, directed or undirected, with vertex set V(G) and edge set

E(G).  A network N is a directed graph which contains two special vertices s and t, the
source and target, respectively, and in which every edge e is assigned a positive integer-
valued capacity cap(e). Terminology for graphs, networks, and flows is taken from Bondy
and Murty [1].  Edges of a directed graph are ordered pairs of vertices.  If (u,v) is an edge,
we indicate that u is adjacent to v by u→v.  Edges of an undirected graph are unordered
pairs, and we write the pair {u,v} as uv, where the order is unimportant.  In a directed graph
we also often use uv to indicate one of the edges (u,v) or (v,u), especially if the direction is
not explicitly given.  The opposite direction will then be given by vu.  Let f be an integer-

valued function on E(N). Given any u∈V(N), the out-flow at u is   f+(u) = ∑
v, u→v

f(uv)  and the

in-flow at u is f–(u) = ∑
v, v→u

f(vu). The function f is called a flow if it satisfies the two

conditions:

i) f+(u) = f–(u), for all vertices u≠ s,t, (the conservation condition)
ii) 0 ≤ f(uv) ≤ cap(uv),  for all edges uv (the capacity constraint).

The value of the flow is val(f) = f+(s)–f–(s), that is, the net out-flow at the source s.  We are
interested in a special kind of network, called a balanced network.

* This work was supported by an operating grant from the Natural Sciences and Engineering Research

Council of Canada.
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1.1 Definition.  A balanced network is a network N with the following properties:
• The vertices of N consist of a source s, a target t, and two sets of vertices 

X={x1,x2,...,xn} and Y={y1,y2,...,yn};
• N contains the pair of edges (s,xi) and (yi,t) for 1≤i≤n;
• The remaining edges of N are between X and Y, and occur in pairs, either (x i,yj)

and (xj,yi), or (yi,xj) and (yj,xi), where i≠j;
• cap(sxi)=cap(yit), cap(xiyj)=cap(xjyi), and cap(yixj)=cap(yjxi), for all i,j.

The vertices of N occur in complementary pairs. Given any vertex u∈V(N), the
complementary vertex will be denoted by u′.  Thus s′=t, t′=s, xi′ = yi, and yi′ = xi. The edges
also occur in complementary pairs: (xi,yj)′=(xj,yi) and (s,xi)′=(yi,t). Notice that (u,v)′=(v′,u′).
Complementary edges always have the same capacity, cap(uv)=cap(v′u′).  A balanced flow
in N is a flow f in which every complementary pair of edges carries the same flow, that is,
f(uv)=f(v′u′). We want to find a maximum balanced flow in N. As can be seen from the
following example, a balanced network is bipartite.  The network in Fig. 1 has cap(x iyj)=1
and cap(sxi)=cap(yit)=di.
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x3

N

Fig 1. A balanced network. Edge capacities are d1, d2, d3, d4 or 1.

Before proceeding further, we explain the motivation for introducing balanced networks and
balanced flows.  Given a graph G, consider the following problems.

Max Matching:   Find a maximum matching in G;
Factor Problem:   Given an integer-valued function b on V(G), does G have a subgraph H
such that degH(u) = b(u), for all u∈V ?

If G were a bipartite graph, we could solve these problems with the standard techniques of
flow theory.  Consider the factor problem.  Let the bipartition of G be (X,Y).  Create a
network N from G as follows. Direct the edges of G from X to Y and assign them a capacity
of 1.  Add a source s and target t, plus all edges (s,x) and (y,t), for all x∈X and y∈Y.  Assign
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capacities b(x) and b(y) to sx and yt, respectively.  Find a maximum flow f in N. It is easy to
see that the subgraph H exists if and only if the value of f is

val(f) = ∑
x∈X

b(x) = ∑
y∈Y

b(y).

To solve the maximum matching problem, just set b(u)=1 for all vertices u, and find a
maximum flow.

When G is not bipartite, standard flow theory does not apply.  However, Tutte’s Theorem
[1,6,10] gives necessary and sufficient conditions for a perfect matching to exist and can be
used to obtain a formula for the size of a maximum matching.  Tutte’s Factor Theorem
[6,8,9,10] solves the second problem.  In [10], Tutte shows that finding an f-factor in G is
equivalent to finding a 1-factor in a considerably larger graph formed by transforming G.

The purpose of balanced flows is to show that these problems can in fact be solved by the
methods of flow theory.  It is shown that Tutte’s factor theorem is equivalent to a min-max
flow theorem, the Max-Balanced-Flow-Min-Balanced-Cut  Theorem.  In terms of network
flows, an f-barrier is equivalent to a minimum balanced edge-cut.  These results are simpler
to derive than the standard structure theory of f-factors (cf. Lovasz and Plummer [6, section
10.2]), since the methods of network flows and edge-cuts apply. In [7] Schrijver states that
combinatorial min-max relations often yield elegant theorems and are closely related to the
algorithmic solution to a problem.  The corresponding algorithm here is the max-balanced-
flow algorithm [4].  This algorithm can also be used to solve the capacitated b-matching
problem (see [7]).

2.  Balanced Edge-Cuts.
Let N be a network.  Let S⊆V(N) and let S denote V(N)–S. The edge-cut K=[S,S]

consists of all edges uv such that u∈S and v∈S.  Let K denote [S,S].   Write

f+(S) = ∑
uv∈K

f(uv) and f–(S) = ∑
uv∈K

f(uv). 

By the conservation condition f+(S)=f–(S) unless s or t is in S.  We shall assume that s∈S and
t∈S, unless otherwise indicated. Then val(f)=f+(S)–f–(S), for all such S.  The capacity of the
edge-cut is cap(K) and the total flow on K is f(K), where

cap(K) = ∑
uv∈K

cap(uv) and f(K) = ∑
uv∈K

f(uv) = f+(S)

By standard flow theory,  val(f)≤cap(K) for all flows f and all edge-cuts K. The Max-Flow-
Min-Cut Theorem states that in any network, the value of a maximum flow f equals the
value of a minimum edge-cut K.  Furthermore, the flow f satisfies f(uv)=cap(uv) for all uv∈K,
and f(uv)=0 for all uv∈K.

These results also hold for arbitrary flows and arbitrary edge-cuts in a balanced network, of
course. However since we want a balanced flow in N, we must restrict attention to certain
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special kinds of edge-cuts. 

Given an arbitrary edge cut K=[S,S] in a balanced network N, we divide the vertices of X and
Y into 4 sets:

A = {xi,yi | xi∈S, yi∈S }
B = {xi,yi | xi∈S, yi∈S }
C = {xi,yi | xi∈S, yi∈S }
D = {xi,yi | xi∈S, yi∈S }

A may then be further subdivided into Ax = A∩X, and Ay = A∩Y, and the other 3 sets may
also be subdivided in the same manner.  This is illustrated in Fig. 2.

Ax

ts

Ay

Cx

Bx

Dx Dy

Cy

By

S S
_

Fig. 2, An edge-cut K.  Edges illustrated belong to K.

We know that val(f)≤cap(K) in general, but for balanced networks, this statement is not as
strong as it could be.  With arbitrary networks one can always find a flow f such that
val(f)=cap(K) for some edge cut K, by the method of augmenting paths. But with balanced
networks, it is not always possible to find a balanced flow f such that val(f)=cap(K). It would
therefore be useful to find a special kind of edge cut K in a balanced network N, such that K
has properties in N that are analogous to those of the usual kind of edge-cut in an arbitrary
network.

The subgraph of N induced by C is denoted N[C].  If C≠Ø, N[C] will be a graph with one or
more connected components.  Let C1, C2, …, Ck be its components.  Let Ki denote those
edges of K with one endpoint in Ci, for i=1,2,…,k, and let Kr denote the remaining edges of
K, that is, those with no endpoint in C.  We also define Ki to be those edges of K with one
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endpoint in Ci, and Kr to be the remaining edges of K.

2.1 Definition.   A balanced edge-cut in N is an edge-cut K that satisfies the following
conditions:

i) There are no edges between C and D;
ii) If u∈Ci, then u′∈Ci ;
iii) if C≠Ø, then cap(Ki) is odd, for 1 ≤ i ≤ k.

It will be seen that there is always an edge-cut of this type corresponding to a maximum
balanced flow. The following notation is now required. Any given component Ci will be
denoted by I.  Thus Ix denotes Ci∩Cx and Iy denotes Ci∩Cy.  Let EAB denote all edges of N
directed from A to B.  It can be divided into those edges directed from Ax to By and those
directed from Ay to Bx . In most applications, N will contain no edges directed from Y to X at
all, but it is easy to include them in the following proofs.  Denote the former set by EAB

+   and
the latter by EAB

– .  Then EAB=EAB
+ ∪EAB

– .  (In most cases EAB
– =Ø.)  Write XAB=cap(EAB) and

FAB=f(EAB).  Then as above we can write XAB = XAB
+  + XAB

–  and FAB = FAB
+  + FAB

– .  By
complementarity, FAB

+  = FBA
+  and FAB

–  = FBA
– .  If EsA denotes all edges directed from s to A,

then XsA denotes cap(EsA) and FsA denotes f(EsA).  This notation is extended to the sets
B,C,D, and I in the obvious way.

2.2 Lemma.   Let K be a balanced edge-cut. For any component Ci,

(FI I
+ – FI I

– ) + (FIA
+  – FIA

– ) + (FIB
+  –  FIB

– ) – FsI = 0.
Proof.  Since the Ci are connected components of N[C] and there are no edges from C to D,

the only edges directed out of Ix are those from Ix to Iy, A y, and By.  Hence f+(Ix) = FI I
+ +

FIA
+  + FIB

+ .  The only edges directed in to Ix are those from Iy, A y, B y, and s. Hence f–(Ix) =

FI I
–  + FIA

–  + FIB
–  + FsI.  Taking the difference gives f+(Ix) – f–(Ix) = 0, by the conservation

condition.

edges in K  = [S,S]
_ _

i

edges in K  = [S,S]
_

i

other edges

ts

A

B S
_

S

CiI = IyIx

cap X
flow F

IA

IA

cap X
flow F

sI

sI

Fig. 3, The edges Ki and Ki.
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2.3 Lemma.   Let f be a balanced flow in N, and let K be a balanced edge-cut.  If f(Ki)=0 for
some Ci, then there is an edge e∈Ki such that f(e)<cap(e).

Proof.  Referring to Fig. 3, we see that f(Ki)=FBI
–  + FAI

+  and that f(Ki) = FIB
+  + FIA

–  + FIt.  By

Lemma 2.2, we can add the expression (FI I
+ – FI I

– ) + (FIA
+  – FIA

– ) + (FIB
+  –  FIB

– ) – FsI to f(Ki)

without changing its value.  This gives f(Ki) = (FI I
+ – FI I

– ) + FIA
+  + 2FIB

+  – FIB
– , since FIt=FsI by

complementarity. If f(Ki)=0 then FBI
–  = FAI

+  = 0, so that f(Ki) = (FI I
+ – FI I

– ) + 2FIB
+ .  But FI I

+ and FI I
–

are even quantities, since e∈EII if and only if e′∈EII. So f(Ki) is also even.  But by the
definition of K, each cap(Ki) is odd.  Therefore f(Ki)<cap(Ki). It follows that each Ki contains
an edge e for which f(e)<cap(e).

This shows that for each set Ki, either f(Ki)>0, in which case Ki contains an edge e with

f(e)>0, or else f(Ki)=0 and Ki contains an edge e for which f(e)<cap(e).

2.4 Theorem.   Let C1, C2, …, Ck be the connected components of C in the balanced edge-

cut K=[S,S].  Then for any balanced flow f, val(f) ≤ cap(K) – k.

Proof.  By Lemma 2.3, one of cap(Ki) – f(Ki) and f(Ki) is at least 1, for each Ci. Therefore

(cap(K) – f(K)) + f(K) ≥ k, which implies that cap(K) – (f(K) – f(K)) ≥k.  But f(K) – f(K) =

f+(S) – f–(S) = val(f).  Therefore val(f) ≤ cap(K) – k.

The capacity of a balanced edge cut, denoted balcap(K), is therefore defined to be
cap(K) – k, where k is the number of connected components of N[C].  A minimum  balanced
edge-cut is a balanced edge-cut such that no balanced edge-cut has smaller capacity.  We
have therefore proved:

2.5 Corollary.   The value of a balanced flow in a balanced network is less than or equal to
the capacity of every balanced edge-cut, that is, val(f)≤balcap(K), for all balanced f and K.

This holds also when f is maximum and K is minimum. In order to prove that the value of a
maximum flow actually equals the capacity of a minimum balanced edge-cut, we need to
consider augmenting paths.

 3. The Max-Flow-Min-Cut Theorem in Balanced Networks.
In general, a flow f in a network N is maximum if and only if there is no augmenting

path in N.  Because of this theorem, algorithms can use augmenting paths to find a
maximum flow.  We need a similar theorem when N and f are balanced.

Suppose that P=(v1,v2,…,vm) is a path in a balanced network N, that is, P has no repeated
vertices, and consecutive vertices vi and vi+1 are adjacent.  Edges can appear in both
directions on P, so that either vi→vi+1, in which case vivi+1 is a forward edge of P; or else
vi+1→vi, and vivi+1 is a backward edge of P.  Let e be an edge on P. The residual capacity
of e is defined in terms of the direction in which it is traversed:
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rescap(e) = 
cap(e) – f(e),   if e is a forward edge,
f(e), if e is a backward edge.

An edge e is saturated  if rescap(e)=0.  Otherwise it is unsaturated.  This depends, of course,
on the direction of traversal.  A path P is unsaturated if all its edges are unsaturated. The

complementary path of P is defined to be P′=(vm′ ,…, v2′, v1′ ). The residual capacity of an
augmenting path P is δ(P)= min

e∈P
 rescap(e).  Clearly e′ has the same residual capacity on P′ as

e has on P, so δ(P′)=δ(P).

If P is a uv-path, that is, if it begins at u and ends at v, then P′ is a v′u′-path.  If P is a vv′-
path, then P   is also a vv -path .  This is of particular use when P is an augmenting st-
path, since then P′ is also an augmenting st-path.  If we begin with a balanced flow f, and
augment on P and on P′ as well, then every edge in N will carry the same flow as its
complementary edge, so that f will still be balanced.  This is illustrated in Fig. 4.

s

y3

x2

x4

y2

y1x1

y4

t

x3

1(0)

1(0)

1(1)

1(1)

1(0)

1(0)

1(1)

1(1)

saturated edge

unsaturated edge

N

Fig. 4, Complementary augmenting paths P=sx1y2x4y3t and P ′=sx3y4x2y1t.

Suppose that P is an augmenting path. Then P′ is also an augmenting path.  However we
may not always be able to augment on both P and P′.  It is sometimes the case that
augmenting on P destroys the augmenting path P′.

3.1 Lemma .  Given an augmenting path with residual capacity δ, we can augment the flow
on P and P′ by at least one unit (but not necessarily by δ units), if and only if P does not
contain a pair of complementary edges with a residual capacity of one.
Proof.  Suppose first that P does contain such a pair of complementary edges. Then P has
the form P=(s…uv…v′u′…t), where rescap(uv)=1.  When we augment on P, the residual
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capacity of uv and v′u′ on P′ becomes zero, so that P′ is no longer an augmenting path in N.
Now suppose that P does not have this form, and let e be an edge of P. If e′ is  not on P,
then augmenting on P does not change its flow, so its residual capacity on P′ remains ≥δ.  If
e′ is on P, then rescap(e′)≥2 before augmenting, so that if we augment by one unit,
rescap(e′) on P′ changes by one, so we can still augment on P′.

We must therefore ensure that any algorithm we use to find a maximum flow in a balanced
network N considers an unsaturated st–path to be an augmenting path only if it does not
contain a pair of complementary edges with a residual capacity of one.

3.2 Definition.    An unsaturated uv-path which contains a pair of complementary edges
with residual capacity 1 is called an invalid path . Any other unsaturated uv-path is called a

valid path, and only a valid st-path is considered to be an augmenting path in N.  A vertex v
is s-reachable if there is a valid path from s to v, and t-reachable if there is a valid path from
v to t.

Let N and f be balanced, and suppose that there is no valid augmenting path in N.  Let S be
the set of all s-reachable vertices and consider the edge-cut K=[S,S].  K has the form
illustrated in Fig. 2.  The vertices can be partitioned into the 4 sets A,B,C, and D.  As before,
let Ci denote the connected components of N[C], for i=1,2,…,k, and let Ki, K r, Ki, and Kr be
as defined in section 2.

3.3 Lemma.  Every edge of Kr∪Kr is saturated from S to S.
Proof.  Let (u,v) be an unsaturated edge from S to S, so that u∈S and v∈S.  Then there is a
valid su-path, but no valid sv-path.  Therefore the edge (uv)′, and hence the vertex u′, must
be on every valid path to u.  Since u∈S, there is at least one such path, so both u and u′ are
s-reachable; this means that u and u′ are in C, so uv is in some Ki or Ki.

3.4 Lemma.  There are no edges between C and D.
Proof.  First notice that D⊆S, so no vertex in D is s-reachable.  Suppose that such an edge
e=(xi,yj) existed, as in Fig. 5. Then e′=(xj,yi) is also such an edge. Either these two edges
carry flow or they do not.  If they do, then xjyi is unsaturated from S to S.  But then x j would
be in S, not S.  If they do not carry flow, then xiyj is unsaturated form S to S, so yj would be
in S, again a contradiction.

C

D
S
_

S
x i

x j

y i

y j

Fig. 5, Edges between C and D.
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3.5 Lemma.  Each Ci consists entirely of pairs of complementary vertices.
Proof. The proof is illustrated in Fig. 6. Let P be any valid path from s to w∈Ci , and suppose

that P first enters Ci along the edge uv.  Then u′∈S, so every valid path to v′ goes through v,
and such a path exists because v′∈C. But if Q is the sub–path that is a vv′-path, then Q′ is
also a vv′-path. Thus every vertex on both Q and Q′ is in C, and therefore in Ci, so Q ∪Q′⊆Ci.
But if w∈Ci then there is a path W connecting either v or v′ to w, since Ci is connected, so
say v. Then W′ connects w′ to v′, so w′ is also in Ci. 

u

v

w

s

W

u′

v′

w′

W′
iC

Q

Q′

S
_

Fig. 6, Complementary vertices in Ci.

3.6 Lemma.  At least one edge is unsaturated from S to S in each Ki∪Ki, for 1≤i≤k.
Proof.  The proof is illustrated in Figs. 6 and 7. Take an arbitrary component Ci, and any
valid path P from s to a vertex in Ci.  Let uv be the first edge on P where v∈Ci.  Then
(uv)′=v′u′ is unsaturated because uv is.  If uv is a forward edge on P then v′u′ is an
unsaturated edge from S to S, and v′u′∈Ki.  If uv is a backward edge, then f(uv)>0, since it is
unsaturated. But then v′u′∈Ki. In either case, Ki∪Ki contains an unsaturated edge.

edges in K  = [S,S]
_ _

i

edges in K  = [S,S]
_

i

edges into Ci

ts

A

B S
_

S

Ci

Fig. 7, Edges of Ki∪Ki

3.7 Theorem.  Let v∈Ci be a vertex such that there is a valid sv-path which first enters Ci at
v. Then every w∈Ci can be reached on a valid path Qw from v, where Qw⊆Ci.
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Proof. By contradiction. Refer to Figs. 8 and 9. Let C* be the largest non empty set of pairs of
complementary vertices in Ci, with the property that every vertex w∈C* is reachable from v
on a valid path.   The paths Q and Q′ of Lemma 3.5 are in C*, so C*≠Ø.

S
_

u v u′v′

w w′
q q′

zz′
R R′

Qw

Ci

*C

Fig. 8, C* and Ci, v∈P.

Now suppose that C*≠Ci, so there is some edge wz such that w∈C* and z∈Ci–C*; thus
w′∈C* and z′∈Ci–C*.  If wz were saturated, then zw, and hence w′z′, would be unsaturated.
Thus either wz or  w′z′ is an unsaturated edge from C* to Ci–C*, so suppose it is wz.  z′∈Ci,
so there is a valid sz′-path P.

Suppose first that v∈P.  v∈C* and z′∉C*, so let P leave C* for the last time from a
vertex q, and let R be the portion of P from q to z′.  If wz is on R, then q=w, z∈R, and the
subsequent portion of R is a zz′-path.  Then its complement would also be a zz′-path.  But
then we can then enlarge C* with the vertices of R∪R′, a contradiction.  Otherwise wz is not
on R.  Let Qw be a valid path from v to w, contained in C*.  R′ is a valid path because R is.
The concatenation Q wwzR′ is a valid path because if it were not, then R′ would contain an
edge e such that either e′=wz or e′ is on Qw.  But R contains no edge of Qw , since Qw⊆C*,
and wz is not on R.  But then Q wwzR′ is a valid path and we can again enlarge C* with the
vertices of R∪R′, a contradiction.

Otherwise v∉P.  Then Pz′w′ is a valid path into C*.  Let q′ be the first vertex at which
P enters C* (maybe q′=w′), and let Pq′ be the portion of P up to q′.  Then Pq′Qq′ is a valid sv′-
path that does not contain v.  This is a contradiction, so C*=Ci, as required.

S
_

u v u′v′

q q′

Qq

Ci

*C
Q′q

s

Pq′

Fig. 9, C* and Ci, v∉P.
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3.8 Lemma.  At most one edge is unsaturated, with residual capacity at most 1, from S to S,
in each Ki∪Ki, for 1≤i≤k.
Proof.  If any edge e of Ki∪Ki were unsaturated from S to S , with rescap(e)>1, then a vertex
in S would be s-reachable, a contradiction.  By lemma 3.6 there is always at least one
unsaturated edge v′u′, so suppose there is a second, say z′w′, as shown in Fig. 10.  Then if R
is a valid sv-path and Q is valid vz′-path contained in Ci, which both exist, then RQ would be
a valid path to z′ that does not use the edge wz, a contradiction.

S
_

w w′z z′

u′v′u v

s

Ci

R

Q

Fig. 10, A component Ci.

This proves that there is exactly one edge in each Ki∪Ki, for 1≤i≤k, that is unsaturated from S
to S. But by lemma 3.3, every edge in Kr∪Kr is saturated from S to S, so we have proved:

3.9 Corollary.   Let K=[S,S], where S is the set of all s-reachable vertices, as above. Then
val(f) = cap(K) – k.

3.10 Lemma.  cap(Ki) is odd, for 1≤i≤k.
Proof.  By lemmas 3.6 and 3.8, either f(Ki)=cap(Ki) and f(Ki)=1, or f(Ki)=cap(Ki)–1 and
f(Ki)=0.  Referring to the proof of lemma 2.3, we have f(Ki)=FBI

–  + FAI
+  and f(Ki) = (FI I

+ – FI I
– ) +

FIA
+  + 2FIB

+  – FIB
– .  In the first case, f(Ki)=FBI

–  + FAI
+ =1, so one of FAI

+  and FBI
–  is 0 and the other is

1. But then f(Ki) = cap(Ki) = (FI I
+ – FI I

– ) + FIA
+  + 2FIB

+  – FIB
– , which is an odd number, since FI I

+

and FI I
–  are even.  In the second case, f(Ki)=FBI

–  + FAI
+ =0, so that f(Ki) = cap(Ki)–1 = (FI I

+ – FI I
– ) +

2FIB
+  is even.  It follows that cap(Ki) is odd.

3.11 Corollary.   K is a balanced edge-cut.
Proof. There are no edges between Ci and Cj , for any i and j, since the Ci are connected
components, so by lemmas 3.4, 3.5, and 3.10, K is a balanced edge-cut, and
balcap(K)=cap(K)–k.

But val(f)=cap(K)–k, by corollary 3.9, so by theorem 2.4, f is a maximum balanced flow in N,
and K is a minimum balanced edge-cut.  We therefore have:

3.12 Theorem.  Let N be a balanced network with a balanced flow f.  Then f is maximum if
and only if there is no valid augmenting path in N.
Proof.  If there is a valid augmenting path, then by lemma 3.1, f is not maximum.  If there is
no valid augmenting path, then by corollary 3.11, the set S of s-reachable vertices defines a
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balanced edge-cut K=[S,S] for which val(f)=cap(K)–k, so that f is maximum, by theorem 2.4.
The above results can be summarized in a theorem.

Max-Balanced-Flow-Min-Balanced-Cut Theorem.   Let N be a balanced network.  The
value of a maximum balanced flow equals the capacity of a minimum balanced edge-cut.
Proof. By theorem 2.4 and corollaries 3.9 and 3.11.

These results mean that in a balanced network N, we can begin with the zero flow and
successively augment the flow on complementary augmenting paths until no valid
augmenting path remains. At that point the flow will be maximum, and the set of s-reachable
vertices will define a balanced edge-cut.  Such an algorithm is developed in Kocay and Stone
[4].  One result is that maximum matchings, f-factors, and capacitated b-matchings  can all
be found by a single flow algorithm.  When the flow is maximum, a balanced edge-cut will
be given by the set of s-reachable vertices.

4. The Factor Problem.
Given the function b(v) of section 1, a subgraph H such that degH(v)=b(v) is called a

factor of G.  (Usually H is called an f-factor, since the function b(v) is usually denoted f(v),
but we are using f to denote a flow.)  Given arbitrary sets A,B⊆V(G), let |A,B| stand for the
number of edges with one end in A and one in B.  Let S,T⊆V(G). Write odd(S,T) for the

number of components C of G–(S∪T) such that |T,C| +  ∑
v∈C

 b(v) is odd.  Tutte’s Factor

Theorem  [10] can be stated as follows.

4.1 Factor Theorem.  G is without a factor if and only if there is a subset S of V(G) and a
subset T of V–S such that

∑
v∈S

 b(v) < odd(S,T) + ∑
v∈T

 (b(v) – degG–S(v) ).

We show how this can be derived from the Max-Balanced-Flow-Min-Balanced-Cut Theorem.

Let V(G)={v1, v2, …, vn}.  Write 2ε= ∑
v∈V(G)

b(v).   Create a balanced network N with vertices

X={x1, x2, …, xn} and Y={x1, x2, …, xn}, as well as s and t.  N has edges (xi,yj) and (xj,yi) for
every edge vivj of G, and all edges (s,xi) and (yi,t) for all vertices vi of G. So G is a
homomorphic image of the [X,Y]-edges of N.  The capacities are cap(sxi)=cap(yit)=b(vi), and
cap(xiyj)=cap(xjyi)=1.  Given any balanced flow f in N, the flow-carrying edges of [X,Y]
define a subgraph H of G such that degH(vi)=f(sxi).

4.2  Lemma.  G has a factor H if and only if balcap(K) ≥ 2ε, for all balanced edge-cuts K.
Proof. The number of edges of H is twice val(f).
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Let f be a maximum balanced flow, and let K be the corresponding balanced edge-cut which
defines the sets A,B,C, and D in N.  Let A*, B*, C*, D* be the corresponding sets of V(G).  C1,
C2, …, Ck denote the connected components of N[C], and each Ki has odd capacity, by 3.10.

We use the shorthand notation ∑A = ∑
v∈A*

b(v), and so forth, for the sets B, C, D.  

4.3 Lemma.  balcap(K)=∑A – ∑B + 2ε + ∑
v∈B*

degG–A*(v) – k.

Proof.  Referring to Fig. 2, balcap(K) = 2∑A + |B,B| + |B,C| + |B,D| + ∑C + ∑D – k.

Notice that 2ε=∑A + ∑B + ∑C + ∑D and that |B,B|+|B,C|+|B,D|= ∑
v∈B*

degG–A*(v).  The

result follows.

4.4 Proof of the Factor Theorem.  Suppose that G is without a factor.  Then there is a

balanced edge-cut such that balcap(K)<2ε.  By lemma 4.3, this gives ∑A – ∑B +

∑
v∈B*

degG–A*(v) – k < 0.  Each Ki has odd capacity.  Notice that cap(Ki)=|B,Ci| +  ∑
v∈Ci

*

 b(v).

Therefore, k ≤ odd(A*,B*).  It follows that ∑
v∈A*

b(v) < odd(A*,B*) + ∑
v∈B*

(b(v) – degG–A*(v) ).

Conversely, suppose that ∑
v∈A*

b(v) < odd(A*,B*) + ∑
v∈B*

(b(v) – degG–A*(v) ) for disjoint

sets A* and B* of V(G).  Form a balanced edge-cut by taking C* to consist of all components

of G–(A*∪B*) such that |B,C| +  ∑
v∈C*

b(v) is odd.  D* contains the remaining vertices of G. It

is easy to verify that this determines a balanced edge-cut K of N for which balcap(K)<2ε.

Thus we have proved the Factor Theorem  with balanced networks.  In the case that no
factor exists in G, the maximum balanced flow algorithm actually finds the sets A* and B*;
they are part of the edge-cut formed by the set of all s-reachable vertices.  That is, it either
finds the factor or finds the two sets that prove that no factor exists.

Suppose that edges of G may be used more than once by edges of H, so that H is a

multigraph, with maximum multiplicity m allowed.  Then balcap(K)=∑A – ∑B + 2ε +

m ∑
v∈B*

degG–A*(v) – k, so that G is without a factor H if and only if there are sets A* and B*

such that ∑
v∈A*

b(v) < oddm(A*,B*) + ∑
v∈B*

(b(v) – m degG–A*(v) ),

where oddm(A*,B*) is the number of components C* of G–(A*∪B*) such that m|B,C*| +

∑
v∈C*

b(v) is odd.
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When m is allowed to approach ∞, so that edges may be used any number of times in H, we
obtain Tutte’s Solubility Theorem [10].  In this case, [B,B]=[B,C]=[B,D]=Ø, for otherwise
balcap(K) would be infinite.  So G is not soluble if and only if there exist disjoint sets A*,B* ⊆

V(G) such that ∑A < ∑B + k, where k is the number of components C* of G–(A*∪B*) such

that ∑
v∈C*

b(v) is odd.

The Erdös-Gallai conditions [2] for the existence of a simple graph with prescribed degree
sequence and prescribed maximum edge-multiplicity can be derived directly from the max-
balanced-flow-min-balanced-cut theorem. Similarly it can be used to find a formula for the
number of edges in a maximum matching in an arbitrary graph.

In summary, Tutte’s Factor Theorem can be viewed as a min-max theorem of flow theory.
The theory of f-barriers [6,9,10] can be viewed as the theory of edge-cuts in balanced
networks. As a result, the theoretical and algorithmic techniques of flow theory can be used
for solving these kinds of problems.  Balanced networks provide a simplification of the
theory of f-factors, f-barriers, and capacitated b-matchings by placing them into the context of
network flows.
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