Torus Maps Last update=8 Aug, 2020 |
A table of torus embeddings of some small graphs appears in The software that generated the original embeddings missed several embeddings. The condition that controls the loop was incorrect, causing the loop to sometimes stop too soon. The corrected numbers of embeddings are shown in the tables following. The graphs with corrected entries are marked with [*] in the last column. The naming of the graphs is described here. A group order like [24] in the table means that the graph has an automorphism group of order 24. The embeddings have subgroups as automorphism groups. Their orders are divisors of the group order, and are listed after the group order. Δ means a triangulation of the torus. Some diagrams follow the tables. Individual files of distinct embeddings can be downloaded by clicking on the hilighted graph names. The unhilighted files are not yet available. Download a text file containing all the embeddings available. |
graph | n | ε | f | emb. | or. | non. | groups | duals |
---|---|---|---|---|---|---|---|---|
K4 | 4 | 6 | 2 | 2 | 0 | 2 | [24] 41,31 | |
K5 | 5 | 10 | 5 | 6 | 3 | 3 | [120] 201,41,23,11 | self(1) |
K3,3 | 6 | 9 | 3 | 2 | 0 | 2 | [72] 181,21 | |
3-Prism | 6 | 9 | 3 | 5 | 0 | 3 | [12] 61,22,12 | |
Octahedron | 6 | 12 | 6 | 17 | 4 | 13 | [48] 121,61,43,31,26,15 | self(1) |
K6 | 6 | 15 | 9 | 4 | 2 | 2 | [720] 62,21,11 | |
K3,4 | 7 | 12 | 5 | 3 | 0 | 3 | [144] 41,31,21 | |
~C7=C7(2) | 7 | 14 | 7 | 28 | 23 | 5 | [14] 141,214,113 | self(1) [*] |
K7 [Δ] | 7 | 21 | 14 | 1 | 1 | 0 | [5040] 421 | Heawood |
K3,5 | 8 | 15 | 7 | 1 | 0 | 1 | [720] 31 | |
Cube=C4xK2 | 8 | 12 | 4 | 5 | 0 | 5 | [48] 241,82,31,21 | Dbl(K4) |
C8+ | 8 | 12 | 4 | 5 | 1 | 4 | [16] 24,11 | [*] |
K4,4 | 8 | 16 | 8 | 2 | 0 | 2 | [1152] 321,161 | self(2) |
~C8+=C8(2) | 8 | 16 | 8 | 37 | 20 | 17 | [16] 161,44,215,117 | self(1) [*] |
~Cube | 8 | 16 | 8 | 8 | 4 | 4 | [48] 42,25,11 | |
~C8 | 8 | 20 | 12 | 10 | 10 | 0 | [16] 27,13 | [*] |
~(2C4) | 8 | 20 | 12 | 6 | 2 | 4 | [128] 82,42,22 | [*] |
~(4K2) [Δ] | 8 | 24 | 16 | 1 | 0 | 1 | [384] 161 | DblCvr(Q3) |
K3,6 | 9 | 18 | 9 | 1 | 0 | 1 | [4320] 181 | Paley(9) |
C9(2) | 9 | 18 | 9 | 37 | 34 | 3 | [18] 181,61,218,117 | self(1) [*] |
C9(3) | 9 | 18 | 9 | 6 | 4 | 2 | [18] 181,31, 23,11 | self(1) [*] |
K3x K3=Paley | 9 | 18 | 9 | 7 | 3 | 4 | [72] 361,181,41,23,11 | K3,6, self(1) |
~(3K3) [Δ] | 9 | 27 | 18 | 1 | 0 | 1 | [1296] 541 | Pappus |
~C9 [Δ] | 9 | 27 | 18 | 1 | 1 | 0 | [18] 181 | (9,3) config |
Petersen | 10 | 15 | 5 | 1 | 0 | 1 | [120] 31 | |
C10+ | 10 | 15 | 5 | 6 | 1 | 5 | [20] 101, 24, 11 | |
C5x K2=5-Prism | 10 | 15 | 5 | 5 | 0 | 5 | [20] 23, 12 | |
C10(2) | 10 | 20 | 10 | 60 | 42 | 18 | [20] 201, 43, 223, 133 | [*] |
C10(4) | 10 | 20 | 10 | 1 | 1 | 0 | [20] 201 | self(1) |
~(K5x K2) | 10 | 20 | 10 | 1 | 1 | 0 | [240] 401 | self(1) |
~C10(2) | 10 | 25 | 15 | 1 | 0 | 1 | [20] 101 | |
~C10(4) | 10 | 25 | 15 | 4 | 4 | 0 | [20] 101,23 | |
~(C5x K2) [Δ] | 10 | 30 | 20 | 1 | 0 | 1 | [20] 201 | (10,3) config |
C11(2) | 11 | 22 | 11 | 77 | 74 | 3 | [22] 221, 236, 140 | self(1) [*] |
C11(3) | 11 | 22 | 11 | 1 | 1 | 0 | [22] 221 | self(1) |
~C11(3) [Δ] | 11 | 33 | 22 | 1 | 1 | 0 | [22] 221 | (11,3) config |
C12(5+) | 12 | 18 | 6 | 3 | 1 | 2 | [48] 121, 61, 21 | [*] |
C6x K2=6-Prism | 12 | 18 | 6 | 9 | 0 | 9 | [24] 121,42,24,12 | |
C12+ | 12 | 18 | 6 | 7 | 1 | 6 | [24] 61,24,12 | |
trunc(K4) | 12 | 18 | 6 | 9 | 0 | 9 | [24] 41,31,22,15 | |
C12(3+,6) | 12 | 24 | 12 | 1 | 0 | 1 | [48] 241 | self(1) |
C12(2) | 12 | 24 | 12 | 138 | 110 | 28 | [24] 241, 81, 62, 44, 245, 185 | [*] |
C12(3) | 12 | 24 | 12 | 1 | 1 | 0 | [24] 241 | self(1) |
C12(4) | 12 | 24 | 12 | 2 | 1 | 1 | [24] 241, 41 | self(1) |
C12(5) | 12 | 24 | 12 | 2 | 0 | 2 | [768] 242 | self(2) [*] |
C12(5+,6) | 12 | 24 | 12 | 10 | 10 | 0 | [48] 62, 26,12 | |
L(Cube) | 12 | 24 | 12 | 16 | 1 | 15 | [48] 241, 82, 41, 31, 23, 18 | [*] |
C4x C3 | 12 | 24 | 12 | 3 | 0 | 3 | [48] 241, 41, 21 | self(1) [*] |
antip(trunc(K4)) | 12 | 24 | 12 | 1 | 0 | 1 | [24] 31 | |
Icosahedron | 12 | 30 | 18 | 12 | 5 | 7 | [120] 31,24, 17 | |
Octahedron x K2 | 12 | 30 | 18 | 1 | 0 | 1 | [96] 121 | |
C12(5,6) | 12 | 30 | 18 | 8 | 5 | 3 | [768] 121, 61, 41, 24, 11 | |
C12(2,5+) | 12 | 30 | 18 | 1 | 1 | 0 | [12] 121 | |
C12(4,5+) | 12 | 30 | 18 | 1 | 1 | 0 | [12] 121 | |
C12(2,3) [Δ] | 12 | 36 | 24 | 1 | 1 | 0 | [24] 241 | (12,3) config |
C12(2,5) [Δ] | 12 | 36 | 24 | 1 | 0 | 1 | [144] 721 | (12,3) config |
C12(3,4) [Δ] | 12 | 36 | 24 | 1 | 1 | 0 | [24] 241 | (12,3) config |
C12(4,5) [Δ] | 12 | 36 | 24 | 1 | 0 | 1 | [48] 241 | (12,3) config |
Q4=C4xC4 | 16 | 32 | 16 | 1 | 0 | 1 | [384] 641 | self(1) |