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Abstract

We simplify and further develop the methods and ideas of [A.
Gagarin, W. Kocay, “Embedding graphs containingK5-subdivisions,”
Ars Combin. 64 (2002), pp. 33-49] to efficiently test embeddability
of graphs on the torus. Given a non-planar graph G containing a
K5-subdivision subgraph, we show that it is possible either to trans-
form the K5-subdivision into a certain type of K3,3-subdivision, or
else to reduce the toroidality testing problem for G to a small con-
stant number of planarity checks and, eventually, rearrangements of
planar embeddings. It is shown how to consider efficiently only one
K5-subdivision in the input graph G to decide whether G is embed-
dable on the torus. This makes it possible to detect a bigger class of
toroidal and non-toroidal graphs.

1 Introduction

We use basic graph-theoretic terminology from Bondy and Murty [1], Dies-
tel [2], and Kocay and Kreher [13]. A simple finite graph G is embeddable
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(embeds) on a topological surface S if it can be drawn on S with no crossing
edges. Such a drawing of G on the surface S is called an embedding. There
can be many different embeddings of the same graph G on a particular sur-
face S. A 2-cell embedding of G on S has each of its faces homeomorphic
to an open disk.

A combinatorial description of a graph G embedded on a topological
surface S is provided by a rotation system of the graph, which is a set of
cyclically ordered adjacency lists for the graph vertices (for example, see
Kocay and Kreher [13]). The topological surface S is usually represented
by a polygon with its sides identified in pairs. For more details, see Fréchet
and Fan [4], or [13].

We are interested in an efficient computer algorithm to decide whether
G embeds on the torus. As shown in Myrvold and Kocay [16], this kind of
algorithm can be very subtle and subject to errors. Classically, a torus em-
bedding algorithm starts with a subgraph of G isomorphic to a subdivision
of K5 or K3,3 and tries to extend one of its embeddings on the torus to an
embedding of the whole graph G (for example, see the algorithms of Myr-
vold and Woodcock [20], and Juvan, Marinček, and Mohar [10]). A modifi-
cation of this approach simplifying the case of an initial K5-subdivision in
G has been proposed by Gagarin and Kocay [6]. They show that non-planar
graphs which do not contain a certain kind of K3,3-subdivision are much
easier to embed on the torus than by using the approach of [20] and [10]
directly. Since there are six non-isomorphic embeddings of K5 (providing
numerous labelled embeddings) and only two non-isomorphic embeddings
of K3,3 (providing only twenty labelled embeddings) on the torus, the ap-
proach of [6] avoids many of the initial cases that must be considered in
the algorithms of [10, 20] and provides an efficient means of handling the
K5 embeddings.

Hopcroft and Tarjan [9] described the first linear-time algorithm to
check if a graph G is planar or not. If G is 2-connected, planar and not
a cycle, then its planar rotation system can always be transformed into a
2-cell toroidal rotation system. Some methods to do this transformation
are presented in Gagarin, Kocay, and Neilson [5] and implemented in the
software Groups&Graphs (see Kocay [12]).

The well-known characterization of non-planar graphs in terms of for-
bidden subgraphs can be stated as follows:

Theorem 1 (Kuratowski [14]) A graph G is non-planar if and only if
it contains a subdivision of K3,3 or K5 as a subgraph.

A short constructive proof of Theorem 1 providing a corresponding algo-



rithm can be found in Klotz [11]. In general, a planarity testing algorithm
can be modified so that, in the case of a non-planar graph G, the algorithm
returns a subdivision of K5 or K3,3 in G (for example, see Williamson
[19] and [11]). The toroidality testing problem can be reduced to testing
toroidality of 2-connected graphs: an embedding on the torus can accom-
modate at most one non-planar 2-connected component of a graph (e.g.,
see Miller [15]). The vertices of degree two are clearly irrelevant to the em-
beddings and embeddability. Therefore, without loss of generality, it can
be assumed that G is a 2-connected non-planar graph having a minimum
vertex degree of at least three, and containing a subdivision of K5 or K3,3

as a subgraph.

The results presented in this paper simplify and extend the results of [6]
and enable us to detect a bigger class of toroidal and non-toroidal graphs
than the torus embedding algorithm of [6]. This is described in more detail
in the conclusion. First, in Section 2, we describe the structure of non-
planar graphs containing a subdivision of K5 and no K3,3-subdivisions of a
special kind with respect to the chosen K5-subdivision. These graphs can
be uniquely decomposed into ten subgraphs corresponding to the ten edges
of K5 (however these graphs can still contain subdivisions of K3,3 as well).
Then, in Sections 3 and 4, we show how to decide on the toroidality of
such a graph G by testing the planarity of its ten subgraphs resulting from
the decomposition, and, whenever possible, to return one of its toroidal
rotation systems.

2 Decomposition and related structural re-

sults

In this section, we briefly review notation, definitions, and results from
[6]. Following [2], a K5-subdivision is denoted by TK5. Similarly, a K3,3-
subdivision is denoted by TK3,3. The vertices of degree four in a TK5 are
called corners of the TK5. The vertices of degree two in a TK5 (if any) are
called inner vertices of the TK5. A path in a TK5 connecting two distinct
corners and having all other vertices inner vertices is called a side of that
TK5. Notice that two distinct sides of the same TK5 can have at most one
common corner and no common inner vertices. A side having a common
corner with another side of the same TK5 is called adjacent to that side.
Two sides having no common corner are non-adjacent. Let W denote the
set of corners of a TK5. Then the set of inner vertices of the TK5 induces
the subgraph TK5 \W .

Let G be a 2-connected non-planar graph containing a TK5 as a sub-



graph. A path P in G is a short-cut of theK5-subdivision TK5 if P∩TK5 =
{u, v} are the endpoints of P , u is an inner vertex of the TK5, and v is on a
side of the TK5 distinct from the side containing u. A vertex u ∈ G \ TK5

is called a 3-corner vertex with respect to the TK5 if the subgraph induced
by the vertices of G \ (TK5 \ W ) in G contains internally vertex-disjoint
paths from u to at least three different corners of the TK5. The following
proposition is shown in [6] and Fellows and Kaschube [3].

Proposition 1 [3, 6] A non-planar graph G containing a K5-subdivision
TK5 and a short-cut or a 3-corner vertex with respect to the TK5 contains
a TK3,3.

As shown in [6], it is possible to decompose graphs containing a K5-
subdivision TK5 with no short-cuts or 3-corner vertices of the TK5 to
decide on embeddability of such graphs in the projective plane and the
torus.

Proposition 2 [3, 6] Given a graph G containing a subgraph TK5 and no
short-cuts or 3-corner vertices of the TK5, a connected component H ′ of
G\W contains inner vertices of at most one side of the TK5. Moreover,
V (H ′) is adjacent in G to exactly two corners of the TK5.

Given a graphG containing a TK5 and no short-cuts or 3-corner vertices
of the TK5, a side component H of the TK5 is a subgraph of G induced
by a pair of corners a and b of TK5 and all the connected components of
G\W adjacent to both a and b.

Corollary 1 [6] Two side components of TK5 in G can have at most one
vertex in common, the common corner of two distinct sides of TK5.

Notice that side components can still contain K3,3-subdivisions, or a
part of a TK3,3 in one side component can be completed to an entire TK3,3

by other side components. Thus, given a graph G with a subgraph TK5,
either it is possible to find a short-cut or a 3-corner vertex of the TK5 in G,
or else the vertices and edges of G\W can be partitioned into ten subgraphs
corresponding to the pairs of corners of TK5 in G.

A side component H of TK5 in G contains exactly two corners a and b

of TK5. Given a side component H with corners a and b, the augmented
side component is H if the edge ab is in H , and H + ab otherwise. The
following general lemma is useful in the embedding algorithm.



Lemma 1 [6] A graph H admits a planar embedding having vertices u and
v on the same (outer) face if and only if there exists a planar embedding of
the graph H + uv, u, v ∈ V (H).

3 Structure of the side components and em-

beddability on the torus

Let G be a 2-connected, non-planar graph containing a subdivision TK5 as
a subgraph. By Propositions 1 and 2, it is possible either to decompose G

into ten side components of TK5, or else to transform the subdivision TK5

into a TK3,3 in G. Then, in the case of a decomposition, it is possible to
decide efficiently whether G is toroidal and to obtain an embedding of G
on the torus by analyzing the side components of TK5 in G as follows.

K5 has six non-isomorphic embeddings on the torus shown in Fig. 1,
where the torus is represented in the usual fashion as a rectangle with op-
posite edges identified. This has been discovered by numerous researchers,
including [5], where all torus embeddings of various graphs were enumer-
ated by computer. Some of these embeddings, namely E1, E4, E5, and E6

in Fig. 1, have a face whose boundary contains a repeated vertex or a re-
peated edge. Such a face is labelled F in Fig. 1. If G is embeddable on the
torus, the subgraph TK5 in G must follow one of these six embeddings of
K5 on the torus.
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Figure 1: Six non-isomorphic embeddings of K5 on the torus.



Suppose there are no short-cuts or 3-corner vertices of TK5 in G. Then
G is decomposable into the side components of TK5. Let H be one of the
side components of TK5 in G. If H is planar, the corresponding augmented
side component H + ab can be planar or not. If H is non-planar, then
clearly the corresponding augmented side component H + ab is non-planar
as well. The following proposition and theorem provide a characterization
of toroidality for such graphs.

Proposition 3 [6] A toroidal graph G containing a subdivision TK5 with
no short-cuts or 3-corner vertices can have at most one non-planar aug-
mented side component. If all ten side components are planar, and at most
one of them becomes non-planar when augmented, then G is toroidal.

This implies there can be at most one non-planar side component of TK5

forG to be toroidal. Two non-planar augmented side components of TK5 in
G imply that G is not toroidal. Therefore, it remains to distinguish between
toroidal and non-toroidal graphs when there are nine planar augmented side
components and a unique non-planar side component of TK5 in G. Given
a side component H with corners x and y, the subgraph H − x or H − y is
called a truncated side component of TK5 in G.

Theorem 2 A graph G containing a subdivision TK5 with nine planar
augmented side components and a unique non-planar side component S

having corners a and b is toroidal, if and only if the truncated side compo-
nent S− a admits a planar embedding such that all the neighbors of a in S

are on the boundaries of exactly two different faces F ′ and F ′′ containing
the other corner b.

Proof: The corners a, b correspond to an edge of K5. Let F1, F2 be the
two faces on either side of this edge in an embedding of K5. As shown
in [6], if the embedding of TK5 can be extended to a torus embedding of
G, then S must be embedded in F1 ∪ F2 ∪ (a, b), where (a, b) denotes the
edge connecting a and b in the embedding of K5. Since the side component
S is non-planar, one of F1, F2 must be the face F with repeated vertices
or edges on the boundary. Denote by F+ the union F1 ∪ F2 ∪ (a, b), where
only the points a, b and all of (a, b) from the boundaries of F1 and F2 are
included. Then at least one of the corners a and b must be a repeated
vertex on the boundary of F+. Since the repeated vertices are identified
on the face boundaries, F+ is not an open disc.

Therefore, we are interested only in the interior of the face F+ and two
corners a, b repeated on its boundary. In E4 of Fig. 1, F+ is homeomorphic
to a disc with a pair of points (vertex 1) on its boundary identified — a



subset of a cylinder. An embedding of S in F+ would give an embedding
on a cylinder, which would imply that S is planar. Some more details for
this and the following three cases can be found in the proof of Proposition
4.1 on pages 40–42 in [6].

Hence, we can assume that S is embedded as one of E1, E5, or E6 of
Fig. 1. There is a number of ways in which this can be done. For example,
in E1, without loss of generality, we can take a to be vertex 2 because of the
symmetry. Then, if b were vertex 3, identifying the repeated edges (2, 3)
on the boundary of F would make F+ a cylinder. Clearly, it is not possible
to have S embedded in the cylinder F+ because S is not planar. Hence
we must take b to be either vertex 4 or 5. Suppose b is vertex 4. Then
F+ consists of a disc with two pairs of points on its boundary identified.
If we have an embedding of S in F+, then, when a is deleted (vertex 2 in
E1), the result is an embedding of S−a on the cylinder containing F+− 2.
Denote by N(a) the neighborhood of a in S. Since b appears twice on the
boundary of F , the vertices of N(a) must be contained in exactly two faces
of the embedding containing b. Otherwise, if N(a) were on the boundary
of only one face of the embedding of S − a, S would be planar, which is
not possible. By symmetry, the same holds for S − b. The case when b is
vertex 5 is identical.

In E5 of Fig. 1, there is a symmetry swapping 1 with 4, and 2 with 3.
Therefore, without loss of generality, we can take a to be vertex 2. Then, if
b were 1, 4, or 5, S would be embedded on a cylinder, which is not possible.
Hence we must take b to be vertex 3. We again find that F+ is a disc with
two pairs of points identified. Hence, S− a is embedded on a cylinder, and
N(a) is contained in exactly two faces of F+ − a. Similarly for S − b.

In E6 of Fig. 1, a can be vertex 1, 2, or 3. If a is 2 and b is 3, then, by
identifying the repeated edges (2, 3) on the boundary of F , we again have S
embedded on the cylinder F+. Therefore, one of a and b must be vertex 1.
Without loss of generality, we take a to be vertex 1. The embedding E6 has
a symmetry swapping 2 with 3, 4 with 5, and fixing 1. Therefore, without
loss of generality, we can take b to be vertex 2. We find that F+ consists
of a disc, with two pairs of points on its boundary identified (two copies
of vertex 3 are ignored in this case), and furthermore, the interior of the
triangular face with boundary (1, 5, 2) attached to the disc along the edge
(1, 2). Note that (1, 2) is not a repeated edge on the boundary of F . Then
F+ − 1 and F+ − 2 are both homeomorphic to a cylinder. We again find
that N(a) must be contained in exactly two faces of S − a. This completes
the proof.



Clearly, Theorem 2 can be stated symmetrically with respect to the
other truncated side component S − b and corner a of S.

4 Algorithm for embedding graphs contain-

ing a TK5 on the torus

The structural results presented in Sections 2 and 3 provide us with the
following algorithm to test embeddability of graphs on the torus. The first
three steps of Algorithm 1 are the same as the first three steps of the
corresponding algorithm for the torus in [6]. However, Theorem 2 is used
to simplify the algorithm of [6] and to detect a bigger class of toroidal and
non-toroidal graphs.

Algorithm 1 Embedding graphs containing a K5-subdivision on the torus.

Input: a 2-connected graph G different from a cycle.

Output: either a toroidal rotation system of G, a TK3,3 in G, or an

indication that G is not toroidal.

Step 1. Use a planarity testing algorithm, e.g., the algorithm of [9], to
determine whether G is planar. If G is planar, then construct a planar
rotation system for it. In [19], it is shown how to do this. Then transform
the planar rotation system into a 2-cell toroidal rotation system by using,
e.g., the method of [5], and return the 2-cell toroidal rotation system of
G. If G is not planar, and a modified planarity test (e.g., the algorithm of
[19]), returns a TK3,3 in G, then return the TK3,3 in G.

Step 2. If G is not planar, and the modified planarity test returns a TK5

in G, then do a depth-first or breadth-first search to find either a short-cut
or a 3-corner vertex of TK5 in G. If a short-cut or a 3-corner vertex of
TK5 in G is found, return the corresponding TK3,3 in G. If there are no
short-cuts or 3-corner vertices of TK5 in G, the depth-first or breadth-first
search can be used to find the ten side components of TK5 in G.

Step 3. If there are two or more non-planar augmented side components
of TK5 in G, return “G is not toroidal.” If there is at most one non-planar
augmented side component of TK5, and the corresponding side component
of TK5 in G is planar, then return a toroidal rotation system of G. If the
side component corresponding to the unique non-planar augmented side
component is not planar, go to Step 4.



Step 4. There are nine planar augmented side components and exactly
one non-planar side component S of TK5 in G. Let a and b be the corners
of S. Test the truncated side components S − a and S − b for planarity. If
S−a or S−b is not planar, return “G is not toroidal.” Otherwise we choose
one of them, say S− a, and find a planar embedding. At this point we also
determine if S − a has cut-vertices, and, if so, we find all the cut-vertices
and blocks. We then find all the separating pairs, thereby determining if
S − a has connectivity 1, 2, or at least 3.

Step 5. S − a is planar and 3-connected. By a result of Whitney [18],
a 3-connected graph has a unique planar embedding, up to orientation of
the plane. Write N(a) for the neighbourhood of a in S. We need to check
if there are exactly two faces of the planar embedding of S − a containing
the corner b and all of N(a). (This is described in detail below.) If so, we
complete the cyclically ordered adjacency lists of a and each of its neighbors
to obtain a toroidal rotation system of G and return the toroidal rotation
system. Otherwise, return “G is not toroidal.”

Since there is exactly one planar embedding of S − a, the facial bound-
aries are uniquely determined. However, note that the graph can be drawn
on the plane so that any face is the outer face. Also, note that d(v) ≥ 3
for any vertex v ∈ S − a in this case. We want to determine if N(a) is
contained in the boundary of exactly two faces F, F ′ of S − a containing
b. Let F1, F2, . . . , Fm be the facial boundaries of S − a containing b, where
m ≥ 3. In order to determine in linear time if F and F ′ exist, we proceed
as follows. First, walk around each Fi and find the subset of N(a) which
it contains. Denote by Si the subset of N(a) in Fi. Now each Fi contains
b. Since S − a is 3-connected, each Fi intersects exactly two other of these
facial boundaries in a vertex other than b. If there are five facial cycles
Fi, Fj , Fk, Fp, Fq with the property that Si, Sj, Sk, Sp, Sq are non-empty,
and none is a subset of another, then F, F ′ do not exist. Therefore we
proceed as follows.

We store four numbers i1, i2, i3, i4, of which each is either 0 or represents
one of the subsets Si. Initially each of the numbers i1, i2, i3, i4 is set to 0
representing S0, which represents a dummy empty set. Now take each
Si in turn, from i = 1 to m, and compare it with the non-empty sets of
Si1 , Si2 , Si3 , Si4 . If Si is a subset of one of them, ignore Si. Otherwise, if
there is a non-empty Sij which is a subset of Si, we replace ij with i. If
this occurs, we then check if any other Sik is a subset of Si. If so, we set
ik to 0. In the remaining possibility, we take the first ij which is 0, and set
ij to i. If this would be i5, then F, F ′ do not exist. When all Fi have been
considered, we have up to four non-empty subsets Si1 , Si2 , Si3 , Si4 , none of
which is a subset of another. We simply check if some two of them contain



all of N(a).

Step 6. S − a is planar and 2-connected, but not 3-connected.
The main idea is to decompose S − a into 3-connected components (e.g.,
using the method of Hopcroft and Tarjan [8]), and then determine if there
is a planar embedding of S − a with exactly two faces incident on b and
containing all of N(a). If such a planar embedding of S − a is found,
complete the embedding of S − a to a toroidal rotation system of G and
return the toroidal rotation system. If not, return “G is not toroidal.”

Thus, we want to determine if there is a planar embedding of S−a with
N(a) contained in the boundary of exactly two faces F and F ′ containing
b. Let H be a graph, and X an induced subgraph of H . A vertex of
attachment of X is a vertex u ∈ V (X) such that u is adjacent to at least
one vertex of V (H)−V (X). If H is 2-connected, every induced subgraphX

with |V (X)| ≥ 2 has at least two vertices of attachment. A planar graph H

which is not 3-connected can have numerous different planar embeddings.
Given a planar embedding of H , a subgraph X with |V (X)| ≥ 3 and only
two vertices of attachment {u, v} can be “flipped over,” thereby changing
the faces of the embedding and the planar embedding itself. The vertices of
attachment form a separating pair in this case, asH−{u, v} is disconnected.
If X ′ is another induced subgraph of H with the same two vertices of
attachment u and v, then X and X ′ can be interchanged, again changing
the faces of the embedding and providing another planar embedding of H .
It can be seen that all planar embeddings of S − a can be obtained from
one of them by a sequence of these operations.

We use a variation of Tutte’s decomposition [17] of a 2-connected graph
H into its 3-connected components. This basically consists of finding all
separating pairs {u, v} in H such that u and v both have degree at least
three. Notice that the classical decomposition is unique, and not every
separating pair of H is actually used for the decomposition (for an example,
see Gagarin et al. [7]). However, algorithmically (e.g., see [8]) all the cycles
of the unique decomposition are usually sliced into smaller cycles (triangles)
which can be done in many different ways.

Given a separating pair {u, v} with d(u) ≥ 3 and d(v) ≥ 3 in H , we
find all the non-trivial minimal induced subgraphs of H with the vertices
of attachment {u, v}. A new edge uv is added to each such subgraph of H
and marked as a virtual edge. This can create multiple edges. The result
is a reduction of H to a collection of subgraphs X1, X2, . . . , Xp containing
virtual edges. Notice that, because of the virtual edges, the components
X1, X2, . . . , Xp are not actual subgraphs of H : we have to account for the
presence or absence of the virtual edges. Some of the Xi’s may consist en-



tirely of virtual edges. A linear-time algorithm for finding all the separating
pairs and reducing H is described in [8]. Notice that if uv is a true edge of
H , then it is an edge of every Xi containing {u, v}.

At this stage, each Xi, i = 1, . . . , p, is either 3-connected, or a cycle,
possibly with some multiple edges. If Xi is a cycle containing a virtual
edge uv which is not a true edge of H and contained in only one other
component Xj, we combine them into Xi ∪Xj and remove uv to obtain a
larger component. We do this amalgamation until every virtual edge which
is contained in a cycle component Xi and not a true edge of H, is contained
in at least three different components.

Therefore, now all the cycles are either attached to a 3-connected com-
ponent Xj , which can be seen as a subdivision of some of the edges of the
original 3-connected component Xj , or else each virtual edge of a cycle Xi,
which is not a true edge in H , is in at least three different components. The
resulting subgraphs X1, X2, . . . , Xq, q ≤ p, are called the 3-components of
H . Again, similarly to the algorithmic decomposition of [8], the decompo-
sition here is not necessarily unique.

Lemma 2 Each 3-component Xi, i = 1, . . . , q, is 2-connected, and has a
unique planar embedding.

Proof: If Xi is 3-connected, this follows from Whitney’s theorem [18]. It
is also true if Xi is a cycle. Otherwise Xi has been formed by replacing one
or more virtual edges uv of a 3-connected graph by a uv-path.

The 3-components and separating pairs of H are related by a tree T

similar to the block-cut-vertex tree for a separable graph. See [7] for details
of the classical unique decomposition tree T . The vertices of the tree T ,
called the Leroux tree,1 are the 3-components of H and the corresponding
separating pairs {u, v} in H . Each separating pair is incident on those Xi’s
in which it is contained. It is easy to see that the Leroux tree T is connected
and has no cycles. Given a 3-component Xi or a virtual edge uv, let φ(Xi)
and φ(uv) denote the vertices of T corresponding to them. Each leaf of T
is φ(Xi) for some component Xi containing exactly one virtual edge, and
no φ(uv)’s are leaves in T .

Lemma 3 Let Xi be a 3-component containing a virtual edge uv. Then
H \ E(Xi) contains a path connecting u to v.

1After Pierre Leroux, who appears to be the first to recognize the importance of this

decomposition tree for 2-connected graphs.



Proof: Consider φ(Xi) and φ(uv). The proof is by induction on ℓ, the
length of a shortest path in T from φ(uv) to a leaf in T , avoiding φ(Xi). If
ℓ = 1, then φ(uv) is incident on a leaf φ(Xj). Then Xj is 2-connected and
has only one virtual edge, uv. Hence, it contains the path desired. Suppose
ℓ > 1. If there is a path P in T from φ(uv) to a leaf, whose internal vertices
all have degree two, then we choose φ(Xj) on P adjacent to φ(uv), such
that φ(Xj) contains a virtual edge xy 6= uv, and the distance on P from
φ(xy) to a leaf is ℓ − 2. Then the components from φ(Xj) to a leaf will
contain an xy-path that belongs to H . Since Xj is 2-connected, it has a
cycle containing uv and xy. Together, the cycle and the xy-path determine
a uv-path in H \ E(Xi).

If there is no path P with all internal vertices of degree two, choose
φ(Xj) adjacent to φ(uv), such that φ(Xj) has distance ℓ−1 to a leaf. Then
Xj contains a virtual edge xy such that φ(xy) has distance ℓ− 2 to a leaf,
and Xj has a cycle containing uv and xy. If there are no other virtual edges
in this cycle, we proceed as above. If it contains another virtual edge wz,
then we choose a shortest path in T from φ(wz) to a leaf, avoiding φ(Xj).
As above we find an xy-path in H and a wz-path in H . Together with the
cycle of Xj , we obtain a uv-path in H \ E(Xi). If there are more virtual
edges in the cycle, we proceed in the same way for each of them.

Now, we begin with a planar embedding of each 3-component Xi, i =
1, 2, . . . , q, of S − a. By Lemma 2, this is unique. Let Ni(a) denote the
subset of N(a) contained in Xi. Consider those Xi’s such that Ni(a) 6= ∅.
Suppose first that b 6∈ V (Xi). Then the Leroux tree T contains a unique
shortest path Pi from φ(Xi) to some φ(Xj) for which b ∈ V (Xj). Let uv

be the virtual edge of Xj on Pi. It is contained in two facial boundaries
F1, F2 of Xj , at least one of which must contain b. As in the proof of
Lemma 3, consider all the paths in T containing φ(uv) and avoiding φ(Xj):
they form a subtree (a branch) of T rooted at φ(uv) which we denote by
Tφ(uv). All the 3-components of these paths must be embedded in the faces
corresponding to F1 and/or F2.

Let u1v1, u2v2, . . . , ukvk be the sequence of virtual edges on Pi in Tφ(uv),
where u1v1 = uv, and ukvk = u′v′ is in Xi. First, consider the case when
only one of F1, F2, contains b on its boundary, without loss of generality,
suppose it to be F1. The virtual edges u1v1, u2v2, . . . , ukvk may or may not
be true edges of S − a. If any of u1v1, u2v2, . . . , ukvk is an edge in S − a,
the embedding must be such that when the virtual edges are deleted or
embedded, the vertices of Ni(a) can be on the facial boundary extending
F1 and still containing b. There is only one way to embed the 3-components
on Pi in Tφ(uv) like this. This is so for every path in Tφ(uv) from φ(uv) to
φ(Xℓ), where Xℓ is any 3-component such that Nℓ(a) 6= ∅. Also, in this



case, for every such Xℓ, Nℓ(a) must lie on a single facial boundary of Xℓ

containing the edge u′v′ on Pl. Then we add Nℓ(a) to Nj(a), and mark
the edge u1v1 of Xj so that the vertices of Nℓ(a) are associated with u1v1.
Thus, when we later traverse F1, the vertices of Nℓ(a) are available through
u1v1. However, if there are φ(Xi) and φ(Xℓ) in Tφ(uv), Xi 6= Xℓ, such that
Ni(a) 6= ∅, Nℓ(a) 6= ∅ and Pi ∪ Pℓ has a vertex φ(umvm) of degree three,
where m ∈ {1, 2, . . . , k}, then it is not possible to find two faces of S − a

containing all of N(a).

If both F1 and F2 contain b in the embedding ofXj , there are some addi-
tional possibilities. Again, some or all of the virtual edges u1v1, u2v2, . . . , ukvk
can be actual edges in S − a. If the virtual edges u1v1, u2v2, . . . , ukvk are
not true edges of S−a and φ(Xi) is a leaf of T , then Ni(a) could be on two
facial boundaries of Xi containing ukvk: one of them could appear in F1,
and the other in F2. There can be several such leaves φ(Xℓ) in Tφ(uv) with
Nℓ(a) 6= ∅ and Nℓ(a) contained in two facial boundaries of Xℓ. Also, there
could be two distinct vertices φ(Xi) and φ(Xℓ) in Tφ(uv) such that Pi ∪ Pℓ

has a vertex φ(umvm) of degree three, where m ∈ {1, 2, . . . , k}, and Ni(a)
and Nℓ(a) are contained in a single face. In such cases, we assign one of
Ni(a), Nℓ(a) to F1 and the other to F2, by marking the two sides of u1v1
in Xj . In this way, for any Xi with b 6∈ V (Xi) and Ni(a) 6= ∅, the vertices
of Ni(a) are assigned to a virtual edge in some Xj containing b.

Suppose now that b ∈ V (Xi), Xi has two or more facial boundaries
Fi1 , Fi2 , . . . which together contain all of Ni(a), and Xi is not a cycle com-
ponent. If Fi1 and Fi2 share a virtual edge uv that is not a true edge, then
there is another component Xj also containing uv. By Lemma 3, H \E(Xi)
contains a uv-path. Therefore, in every embedding of S − a, the vertices
of Ni(a) in Fi1 and Fi2 will be in different facial boundaries. We conclude
that for any Xi with b ∈ V (Xi) and Ni(a) 6= ∅, the vertices of Ni(a) must
be contained in either one or two (at most two) facial boundaries of Xi

containing b. Furthermore, adding another 3-component Xk to the planar
embedding of Xi cannot decrease the number of faces in the joint embed-
ding. We use the method of Step 5 to determine if there are up to two
facial boundaries of Xi containing b which contain all of Ni(a). This works
because of Lemma 2. This is done for each such Xi, i = 1, 2, . . . , q.

Suppose that Xi and Xj are two distinct 3-components containing b

such that each requires two facial cycles containing b to give all of Ni(a)
and Nj(a). Let the two faces of Xi be Fi1 , Fi2 , and those of Xj be Fj1 , Fj2 .
By Lemma 2, Xi and Xj both have unique planar embeddings. Therefore,
Xj must be embedded inside a face of Xi incident on b. It is only feasible
to embed Xi and Xj properly if Fi1 , Fi2 both contain a virtual edge bv,
Fj1 , Fj2 also contain the same virtual edge, and bv 6∈ S − a, so that when



Xi and Xj are both embedded, the facial boundaries can combine to give
just two new facial boundaries. This determines F, F ′ completely, so that
now we just walk along the facial boundaries of F and F ′ and add all the
other components to determine whether they do in fact give a solution.

Suppose next that there is just one Xi containing b such that it requires
two facial cycles containing b to give all of Ni(a). Let the two facial cycles
be Fi1 , Fi2 . There may be more than one possible choice for Fi1 , Fi2 , but
the choices are easily determined by the sets Si1 , Si2 , Si3 , Si4 of Step 5. It
is possible that Fi1 , Fi2 share a virtual edge uv. We walk around each of
Fi1 and Fi2 and add all the other components to determine whether they
do in fact give a solution.

The last case is when there are severalXi’s containing b which have only
one facial cycle containing b which contains all of Ni(a). Some of these may
be cycles. By Lemma 2, each Xi has a unique embedding. Choose an Xi

and let Fi be the unique facial boundary of Xi containing Ni(a). Let bv

and bw be the two edges of Fi incident on b. Suppose that bv is a virtual
edge. Then it is contained in another component Xj , which also has a
unique embedding. In Xj , bv may also be contained in the unique face Fj

containing Nj(a). If bv is not a true edge in S−a, then the outer face of the
unique embedding of Xj can be chosen so that Fi ∪ Fj forms a single face
of Xi ∪Xj . Let bw and bx be the two edges of Fi ∪ Fj incident on b. We
repeat this argument; bx may be a virtual edge contained in a component
Xk, with face Fk. There is only one way to extend the embedding to
Xi∪Xj ∪Xk so that Fi∪Fj ∪Fk forms a single facial boundary containing
Ni(a) ∪ Nj(a) ∪ Nk(a), etc. Starting from any Xi, there is a unique way
to extend it so as to contain as much of N(a) as possible. If there are
any remaining vertices of N(a), choose a component not yet included, and
extend it in the unique way. Eventually, when the components containing b

and vertices of N(a) on a unique face F are combined together, the unique
face F will be split into at least two faces containing b and some or all of
N(a), which brings it to one of the previous cases. If F and F ′ exist, they
will be found in this way, starting from any Xi for which Ni(a) 6= ∅.

Step 7. S − a is planar and 1-connected, but not 2-connected.
We want to determine if there is a planar embedding of S − a with N(a)
contained in the boundary of exactly two faces of S − a containing b. We
first find the blocks and cut-vertices of S − a. A linear-time algorithm for
finding the blocks and cut-vertices was discovered by Hopcroft and Tarjan
in 1973, using a depth-first search. It is described in numerous textbooks,
including [13]. This determines the block-cut-vertex tree decomposition of
S−a. Each block B is either an edge, or a maximal 2-connected subgraph.
If B is 2-connected, it is then reduced to its 3-connected components and



separating pairs, as in Step 6. The 3-components of B may contain virtual
edges, but no virtual edge is a cut-edge of S − a.

Given a cut-vertex v, consider the maximal induced subgraphs X with
only v as vertex of attachment, such that v is not a cut-vertex in X . Call
these subgraphs of S − a the 1-connected components at v. Now if b is not
contained in any 3-component (this implies that b is not in a non-trivial
block either), then b must be a cut-vertex not incident on any virtual edge.
There is just one face incident on b, and we require it to contain all of N(a)
on its boundary. However, if all of N(a) is on a single face boundary, then
S would be planar. Therefore this case is not possible, and we can assume
that b is in at least one 3-component.

Suppose first that b is not a cut-vertex of S − a. Then it is contained
in just one block B, which must be 2-connected. Given any cut-vertex
v in B, let Nv(a) denote the vertices of N(a) contained in all 1-connected
components at v, excluding B. Note that all these 1-connected components
can be embedded in any face of B incident on v. We now use the method
of Step 6 to determine if all the vertices of N(a) are contained in one or
two faces of B containing b, where cut vertices v contribute Nv(a) to this
set. If there are two facial boundaries F, F ′, we walk around each in turn.
If v is any cut-vertex encountered, then every 1-connected component X

at v such that Nv(a) 6= ∅ must be embedded inside F or F ′. This is only
possible if in every block of X , all the vertices of N(a) contained in the
block are embedded on one face, the outer face. We check that this is so
for F and F ′.

Otherwise b is a cut-vertex. Let B1, B2, . . . , Bq denote the blocks con-
taining b. For each Bi which is not an edge we use the method of Step 6 to
determine if there is an embedding of Bi such that all of Ni(a) is contained
in one or two facial boundaries. There can be at most one Bi whose ver-
tices Ni(a) require two faces F, F ′. In this case we proceed exactly as in the
preceding paragraph, since each remaining block Bj must have all of Nj(a)
appearing on the boundary of a single face. Bj can be embedded inside
either of F or F ′. If every Bi requires only one face for Ni(a), then there is
an embedding in which all vertices of N(a) can be placed on a single facial
boundary, which is impossible.

For any subgraph Y of S − a, we can easily check if there is a planar
embedding of Y with all the vertices of N(a) in Y on a single face boundary
and find such an embedding of Y as follows. First, add a dummy vertex a′

to Y and connect a′ to all the neighbors of a in Y to obtain Y ′. Then run
a planarity testing algorithm on Y ′. Finally, if Y ′ is planar, remove a′ from
Y ′ to obtain a necessary planar embedding of Y (if one exists). Otherwise,
there is no planar embedding of Y with all the vertices of N(a) in Y on a



single face boundary.

When S−a is 3-connected, this algorithm is straight-forward and fairly
easy to program. If S − a is not 3-connected, this greatly increases the
number of cases that must be considered. Nevertheless, each step can be
done in linear time in the number of edges of the input graph G. Since a
toroidal graph G with n vertices has at most 3n edges (e.g., see [13]), the
entire algorithm has a linear time complexity and can be implemented to
run in O(n) time.

5 Final remarks and conclusions

The algorithm presented in this paper improves algorithms presented in
[6, 10, 20]. First, it avoids the numerous labelled embeddings derived from
the six embeddings of K5, each requiring a special treatment: it remains
only to consider the cases of the two unlabelled embeddings of K3,3 on
the torus (providing only twenty labelled embeddings) for the algorithms
of [10, 20]. Then, the algorithm of this paper considers the side compo-
nents of only one K5-subdivision TK5 in the input graph G to determine
if G is toroidal: this is simpler than the method of [6]. In that paper, a
TK5 and its side-components were constructed. If the side components
were planar, and at most one augmented side-component was non-planar,
then the graph was embedded. If there was a non-planar side component
which also contained a TK5 sharing two corners with the original TK5,
then toroidality could be determined. This required 19 side-components of
the combined TK5’s. But if a TK3,3 in a side component occurred, then
the algorithm could not proceed. The current algorithm is able to detect
a bigger class of toroidal and non-toroidal graphs than the algorithm of
[6]. For example, a side component S containing a TK3,3 might now be
embeddable if S − a is planar, and if a side component S has S − a non-
planar, then it is now known that G is not toroidal. This approach of
excluding some K3,3-subdivisions and doing decompositions as in Section 2
can likely be generalized to devise graph embedding algorithms for oriented
and non-oriented surfaces of higher genus.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications , American
Elsevier Publishing, New York, 1976.

[2] R. Diestel, Graph Theory, 2nd edition, Springer, 2000.



[3] M. Fellows, P. Kaschube, Searching for K3,3 in linear time, Linear and
Multilinear Algebra 29 (1991) 279–290.
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