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Abstract

A technique is described that constructs a 4-colouring of a planar tri-
angulation in quadratic time. The method is based on iterating Kempe’s
technique. The heuristic gives rise to an interesting family of graphs which
cause the algorithm to cycle. The structure of these graphs is described. A
modified algorithm that appears always to work is presented. These tech-
niques may lead to a proof of the 4-Colour Theorem which does not require
a computer to construct and colour irreducible configurations.

1. Kempe’s Algorithm

One of the most well-known, and well-studied, problems in graph theory is
the “Four-Colour Problem” — the proposition that any planar graph has a
proper colouring using no more than 4 colours. The first published proof
was that of Kempe [9], although this was later shown to be in error by
Heawood [7]. Since then, numerous researchers have studied the prob-
lem, including Allaire and Swart [1], Appel and Haken [2,3,4], Birkhoff [5],
Heesch [8], Ore [10], Robertson et al [11,12,13], Saaty & Kainen [14,15],
Tutte [16], and Whitney [16].

In 1976, a proof was finally achieved by Appel and Haken [2,3,4], but
this proof relied on a computer to resolve nearly 1800 cases (later reduced
to 1400), and was considered by many to be unsatisfactory. This proof
has since been improved by Robertson et al [11,12,13], using 633 cases.
Although still relying on a computer to check all the cases, this newer
proof gives assurance that no fatal errors were made in the original proof.
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The common factor in Kempe’s approach and those of Appel and
Haken and Robertson et al, is the configuration [1,8]. Each of these ap-
proaches relies on showing that any planar graph contains one of a number
of configurations, and that for each configuration, a proper colouring of a
smaller (reduced) graph can be extended to a proper colouring of the initial
graph.

The Appel and Haken proof is claimed to result in a quartic-time al-
gorithm, while the Robertson et al proof results in a quadratic-time algo-
rithm. However, in each case, it is necessary to find one of the numerous
configurations in the graph.

We attempted to find a simple extension of Kempe’s algorithm that
would correctly 4-colour all planar graphs in quadratic time or better. The
algorithm which we have developed appears to run in quadratic time for all
planar graphs, but we are unable to prove that it always works — hence the
designation “heuristic”. A proof that the algorithm always works would be
a proof of the 4-Colour Theorem.

Since our algorithm is based on that of Kempe [9], we review Kempe’s
algorithm first, then show how to modify it to produce a new algorithm.
We then describe a class of graphs for which the new algorithm cycles, and
make some observations about this class of graphs. The result is a heuristic
which appears always to work.

Let G be a connected undirected simple graph on n vertices V(G).
If u,v € V(G), then 4 — v means that u is adjacent to v (and so also
v — u). The reader is referred to [6] for other graph-theoretic terminology.
Without loss of generality, we will assume that G is a connected planar
triangulation. We will use induction on n. As our base case, we note that
graphs with n < 4 can easily be 4-coloured.

In any triangulation with at least 5 vertices, there is always a vertex
of degree 3, 4, or 5. We follow Kempe’s method in dealing with degrees 3
and 4, and modify his method for degree 5. When a vertex z in G of degree
k is deleted, a face bounded by a polygon of degree k is created. We will
always assume that G — z is drawn so that this polygon is the outer face.

For any graph G, define the Kempe subgraph for colours 4 and j, K9,
to be the subgraph of G induced by the vertices of colour ¢ or j. Each
connected component of this subgraph will be called a Kempe component.
We will identify a Kempe component by one or more of its vertices: K 9 (u)
will refer to the Kempe component of colours ¢ and j that contains vertex
u. A wv-path in K% (u) will be called a Kempe chain. We will sometimes
write a uv-Kempe chain of colours ¢ and j, or alternatively, an ij-Kempe
chain from u to v.



1.1 Degree 3:

Let z be a vertex of degree 3 in G. Let the adjacent vertices be u, v and w.
Notice that G — z is a triangulation on n — 1 vertices. We 4-colour G — z
and re-attach z, giving it a colour different from u,v and w.

1.2 Degree 4:
Let 2z be a vertex of degree 4 in G. Let the adjacent vertices be u, v, w and
z. Deleting » gives a quadrilateral face uvwz (see Fig. 1). To maintain the
triangulation, we insert either uw or vz. Note that we can always do so,
since uw and vr cannot both be in G, as G is a planar graph.

By hypothesis, the reduced graph is 4-colourable. If any two of u, v, w,
z are the same colour, then there is a colour available for z, as in graph H
of Fig. 1. We therefore assume that u, v, w, z are of colours 3,1, 4, 2 respec-
tively, as in graph K of Fig. 1. Consider the Kempe component K34(u). If
w € K3*(u), we can interchange the colours 3 and 4 in K3*(u) to get a new
colouring of G’ in which u, v, w, z are coloured 4,1,4,2, respectively, thereby
allowing us to colour z with colour 3. Otherwise w € K®*(u). Let C be a
uw-Kempe chain in K**(u). Now construct the Kempe component K'2(v).
Clearly z € K'%(v), since any vz-Kempe chain must intersect C, which is
coloured with colours 1 and 3 only. Therefore we can interchange colours 1
and 2 in K12(v) to get a new colouring of G’ in which u, v, w, = are coloured
3,2,4,2, respectively, thereby allowing us to colour z with colour 3.

Fig. 1, Graphs H and K

This argument, that two complementary Kempe components cannot
intersect, is at the heart of the algorithm, and we will see it repeatedly in
what follows. The main operation in the algorithm will be constructing a
Kempe component K* (u) for colours 4 and j and vertex u, and interchang-
ing colours. Note that a Kempe component can be constructed in O(n) time
using a breadth-first search, and that colours can be interchanged also in
O(n) time.

1.3 Degree 5:
Let 2 be a vertex of degree 5 in G. Let the adjacent vertices be u, v, w, z and
y. Deleting z gives a pentagonal face uvwzy. To maintain the triangulation,



we must add two diagonals to the pentagonal face. We first try ww and
uzx, provided that neither edge is in G already. If vw is in G, then va and
vy are not, as G is planar. Similarly, if uz is in G, then vy and wy are
not. In either case, we relabel the graph, so that the common vertex of
the two new edges is u. After colouring this reduced graph, there are only
four colourings on (u,v,w, z,y) possible, up to isomorphism: (1,2,3,2,3),
(1,2,3,4,2), (1,2,3,4,3), and (1,2,3,2,4). In the first case, colour 4 is
available, and we apply it to z. In the other cases, we note that each has
two vertices of the same colour, and re-label both vertices and colours so
that the two vertices of the same colour are v and y, with colour 2, so that
(without loss of generality) we have (u,v,w,z,y) is coloured (1,2,3,4,2).
An example is given by the graph CKj in Fig. 3.

If w € K'3(u), we interchange colours in K'3(u) releasing colour 1 to
apply to z. Otherwise, if x € K'*(u), we interchange colours in K*(u),
again releasing colour 1 to apply to z.

At this point, Kempe observed that a (1, 3)-chain from u to w precludes
the existence of a (2,4)-chain from v to z, and that a (1,4)-chain from u
to = precludes the existence of a (2,3)-chain from w to y. Interchanging
colours in both K?%(v) and K?3(y) would create a colouring (1,4, 3,4, 3)
on the pentagon, thereby releasing colour 2 for z. The error here lies in the
~assumption that both intherchanges may be performed simultaneously [7].
Note that in the graph CKj of Fig. 3, that interchanging colours in K?4(v)
creates a (2,3)-chain from w to y.

2. Iterating Kempe’s Algorithm

Let (u,v,w,z,y) be the pentagonal face of G — z. If this cycle is
coloured with 4 colours, there is exactly one colour that occurs twice, with
one vertex adjacent to the vertices with the repeated colour. This vertex is
called the apez of the pentagon. Without loss of generality, let (u, v, w, z,y)
be coloured (1,2, 3,4,2), so that u is the apex. Suppose that w € K3(u).
It follows that z € K?%(v). Interchange colours in K?4(v). The vertices
(u,v,w,z,y) are now coloured (1,4, 3,4,2). The new apex of the pentagon
is w. See Fig. 2.

The (1, 3)-Kempe chain from w to u still exists. If y € K?3(w), then
we can interchange colours in K23(w), releasing colour 3 for z. Otherwise
u € K'(z), so that we can interchange colours in K'4(z). The pentagon
(u,v,w,z,y) is now coloured (1,4,3,1,2), so that y has now become the
apex. We iterate this technique.

2.1 Algorithm

Let (u,v,w,z,y) be a pentagon coloured (i, 4, k, ¥, ), using 4 colours, so
that u is the apex. Suppose further that an i/-Kempe chain from u to x
exists.



1. Construct K®*(u). If w € K*(u), there is no ik-Kempe chain from
u to w. Interchange colours in K*(u). The pentagon (u,v,w,z,y) is
now coloured (k, j, k, 4, 7). Colour z with colour ¢ and stop.

2. Otherwise there is an ik-Kempe chain from u to w. Construct K7¢(v)
and interchange colours in it. The pentagon (u,v,w,z,y) is now col-
oured (1,4, k,£,7). The apex is now w. The ik-Kempe chain from u to
w still exists.

3. Relabel the vertices and colours so that (w, z,y, u,v) becomes (u, v, w,
z,%y) and (k,4,j,1,£) becomes (i,7,k, £, j). The ik-Kempe chain from
u to w of step 2 has become an i/-Kempe chain from u to z. Go to
step 1.

Note that this relabelling rotates the arrangement of the 4 colours on the
pentagon. This is illustrated in Fig. 2, where the apex of the pentagon is
indicated by an arrow. We repeat this iteration until Kempe’s algorithm
succeeds. We say that executing the 3 steps of the above algorithm consi-
tutes one iteration. We say that a graph causes the algorithm to iterate, if
it must perform at least one iteration before terminating.

Fig. 2, Rotation of the apex

Under what conditions does Algorithm 2.1 fail to terminate? Since the
changes created by interchanging colours in a Kempe component are not
local to the face under consideration, it is extremely difficult to analyze.
Computer experimentation seems to indicate that such graphs are very
rare. Since there are a finite number of colourings for any given graph, if the
algorithm fails to terminate, there must be a repeated colouring, after which
the algorithm cycles. Suppose that G is a graph for which the algorithm
cycles. Let the pentagon (u,v,w,z,y) be initially coloured (1,2,3,4,2),
with u as the apex. Notice that after 5 iterations, the apex has returned
to its original position, but that the colours have been permuted according
to the permutation (1,3,2,4), which has period 4 (refer to Fig. 2). Thus,



if the algorithm is to cycle, the number of iterations required to return the
graph to its original colouring is a multiple of 20.

In an attempt to find graphs for which the algorithm cycles, we con-
structed graphs by pseudo-randomly inserting vertices of degree 3, 4 and 5
into Ky, according to some fixed ratio, in order to create a pseudo-random
planar triangulation. Each graph was then 4-coloured by Kempe’s algo-
rithm, using Algorithm 2.1 to deal with vertices z of degree 5. Any graphs
arising during the course of the algorithm for which Algorithm 2.1 iterated
at least once was saved to a file. Every such graph has minimum degree
5. Some of these graphs (the smaller ones) were tested by constructing
all possible colourings, and counting the number of colourings requiring 0
iterations, 1 iterations, 2 iterations, etc. The following points are in order.

1. We coloured planar graphs with up to n = 3000 vertices. We found
they were coloured in a short time by this algorithm. A formal upper
bound of O(n?) can be proved, provided that all graphs terminate
within a fixed number of iterations (e.g. 20).

2. Although a simple upper bound of 4 - 3! distinct colourings of a
connected planar graph on n vertices can be written, the number of
colourings found in these triangulations of degree 5 and more was ap-
proximately O(1.3"), allowing us to test exhaustively any given trian-
gulation up to about n = 55 vertices in a reasonable amount of time.

3. The number of colourings requiring j iterations was roughly 1/2 the
number of colourings requiring j — 1 iterations, and quite frequently
less.

4. Taking the planar dual of a triangulation which causes Algorithm 2.1
to iterate, and truncating it, often resulted in finding more graphs for
which the algorithm iterated.

3. The CK Family of Graphs

After some time, we discovered a family of graphs for which Algorithm 2.1
cycles, the smallest of which, CK, has 16 vertices arranged in 3 concentric
rings of 5 vertices, with a single centre vertex. Recall that z is assumed to
be in the outer face. Fig. 3 shows a number of colourings of CK, denoted
CKo,CK;,CKj, etc. When the algorithm is about to colour z, CK may
have one of the colourings CK;.

3.1 Lemma. Algorithm 2.1 cycles when input colouring CKjp, through a
sequence of 20 distinct colourings.

Proof. When Algorithm 2.1 is applied to C Ky, we get a sequence of colour-
ings as follows. After 1 iteration the colouring is C K, after 2 iterations it
is Ky, and so forth. After 4 iterations (CKy), the apex has moved to ver-
tex 2. The colouring is now identical to C Ky, except that the entire graph



 has been rotated. The rotation of the outer pentagon can be described as

(u,z,v,y,w). As this permutation has period 5, we conclude that C' Ky is
the first colouring identical to CKj.

Fig. 3, Colourings of CK



Notice that the centre vertex of CK has the same colour in each of
CKo,...,CKjq, as it is not affected by any of the colour-interchanges in
any Kempe component.

3.2 Lemma. The colourings CKy, CKy, and CKj are all non-isomorphic
as coloured graphs.
Proof. In CKy and CK, the second outermost ring is coloured in 4 colours.
In CK7, only 3 colours are used. Notice that the central vertex is coloured
2 in all graphs CK;. In CK>, the apex of the outer ring is coloured the
same as the central vertex. This is not the case in CKj. This shows that
CK,,CK;, and CK, are distinct as coloured graphs.

We remark that CKj is isomorphic to CK;, with (3,4)(v,w)(u, )
being a permutation of vertices and colours mapping CKj to CKj.

Algorithm 2.1 is used to colour a vertex z of degree 5 in a planar trian-
gulation. Suppose now that G is any coloured graph to which the algorithm
is applied. G will always be a near triangulation with one pentagonal face,
which we always take to be the outer face. Without loss of generality,
we will denote this face by (u,v,w,,y), coloured (1,2,3,4,2). Construct
two new coloured graphs G4 and Gp as follows. Add 2 pentagonal rings
(a,b,c,d,e) and (u',v',w’,z’,y’) to the pentagonal face of G, as indicated
by Fig. 4. In G4, (a,b,c,d, €) is coloured (1,3,4,3,4), and (', v, w2, y)
is coloured (1,2,3,4,2). In Gg, (a,b,c,d,e) is coloured (2,1,3,4, 1), and
(', v, W',z y') is coloured (1,2,3,4,2). Notice that as coloured graphs,
G 4 and G g are not isomorphic.

3.3 Theorem. Let G be any coloured graph for which Algorithm 2.1
cycles. Then Algorithm 2.1 also cycles on G4 and Gp.

Proof. The successive colourings of G4 and G as Algorithm 2.1 is applied
are shown in Figs. 4 and 5. Write G4, = Ga and Gp, = G pg. Notice that
for Ga,,Ga,,Ga,,Gas, the ij-Kempe chain from the apex of G4 to the
base contains the ij-Kempe chain of G. Furthermore, interchanging colours
in K'3(u) in G4, also interchanges colours in K'?(u) in G. Algorithm 2.1
applied to G 4, induces the sequence of colourings Go, G1,Ga, - - - of G. Asin
Lemma 3.1, we see that G 4, is identical to G 4,, except that the graph has
been rotated. It follows that Algorithm 2.1 also cycles on G 4, with period
20. The proof for Gp is identical, although the sequence of colourings is
different.

Theorem 3.3 allows us to construct a family of graphs for which Algo-
rithm 2.1 cycles. Beginning with CK, we have CKa,CKp, CKaa,CKap,
CKga,CKgg,..., etc. Each of these coloured graphs cycles with period
20.



Fig. 4, Colourings of G4



Fig. 5, Colourings of G



Note: We constructed all possible colourings of CK 4, and applied Algo-
rithm 2.1 to each one. The only colourings which cycled are those in the
sequence of CK 4, and CKp,. We also constructed all possible colourings
of the graph obtained from CK by adding only one ring (a, b, ¢, d, €) and ap-
plied Algorithm 2.1 to each one. None of these graphs cause the algorithm
to cycle.

An additional transformation of the graphs in the C K-family is possi-
ble.

3.4 Construction. Let (u,v,w) be any face in any coloured graph G in
this family. Let H be any coloured triangulation. We can choose any face
of H and identify it with (u,v,w), embedding H inside the face, where it
may be necessary to permute the colours of H to make them agree with
the colours of (u,v,w). The result is a triangulation G’ with a separating
3-cycle (u,v,w).

All the edges of the Kempe chains of G that cause Algorithm 2.1 to
cycle are still present in G'. Consequently, Algorithm 2.1 will also cycle
with input G’, with period a multiple of 20.

Fig. 6, Creating a separating 4-cycle

Notice that in the graphs G4 and G of Figs. 4 and 5, that the edges of
the 5-cycles (u,v,w,z,y) and (a, b, c,d, e) are not used in any of the Kempe
chains.



3.5 Construction. Let rt be any edge of the pentagon (a,b,c,d,e) in a
graph G of the CK family of graphs. Edge rt is contained in 2 triangles, so
that it is part of a 4-cycle (g, r, s,t). Let H be any near triangulation whose
outer face is a 4-cycle coloured the same as (q,r,s,t). Delete the edge rt
from G and identify the outer face of H with the 4-cycle (q,r, s,t), embed-
ding it inside the face. The result is a triangulation G’ with a separating
4-cycle (q,r, s,t).

All the edges of the Kempe chains of G that cause Algorithm 2.1 to
cycle are still present in G'. Consequently, Algorithm 2.1 will also cycle
with input G’, with period a multiple of 20. An example is shown in Fig. 6.

These constructions can be used to generate a large number of graphs
for which Algorithin 2.1 cycles. They are all based on the Kempe chains in
the graph CK. We have not found any other graphs for which the algorithm
cycles.

Question: Are there any graphs which cause Algorithm 2.1 to cycle which
are not based on the graph CK?

4. The Modified Algorithm

We now present a modified version of the iterated Kempe algorithm, de-
signed to avoid the problems with the CK family of graphs. If a graph G
has a separating 3-cycle or 4-cycle, we use the method described in Saaty
and Kainen [14] to split G into 2 subgraphs H and K and colour each
part separately. As H and K will both have fewer vertices than G, we can
assume that the algorithm will colour them correctly.

4.1 Separating 3-Cycle.

Let G have a separating 3-cycle (u,v,w). Let H be the subgraph inside
(u,v,w) and let K be the subgraph outside (u, v, w). Note that (u,v,w) is
a cycle in both H and K. Colour H and K independently. Permute the
colours of K, if necessary, so that (u,v,w) is coloured identically in both
H and K. This gives a colouring of G.

4.2 Separating 4-Cycle.

Let G have a separating 4-cycle (u,v,w,z). let H be the subgraph in-
side (u,v,w,z) and let K be the subgraph outside (u,v,w,z). Note that
(u,v,w, ) is a cycle in both H and K. Add the diagonal edge vz to both
H and K to create triangulations, and colour H + vz and K + vz indepen-
dently. In both H and K, vertices v and x have different colours. Without
loss of generality, let v have colour 1 and x have colour 2 in both H and K.
Let u have colour 3 in H. We can permute the colours of K if necessary so
that u also has colour 3 in K. If w has the same colour in H and K, we
have a colouring of G. Refer to Fig. 1.



Otherwise we can assume that w has colour 3 in H, but colour 4 in K.
If u € K3 (w) in K, interchange colours in K**(w). Vertices u and w are
now both coloured 3 in H and K, giving a colouring of G.

If, however, u € K3*(w) in K, there is then no (1,2)-Kempe chain
from v to z in K. Now colour H + uw to get a colouring of H in which u
and w have different colours. Without loss of generality, we can take these
colours to be 3 and 4, respectively. If v and z are coloured differently in
H, we can take v to be coloured 1 and z to be coloured 2, as in K, giving
a colouring of G. But if v and z are both coloured 2, we then interchange
colours in K1%(v) in K, so that H and K agree on the 4-cycle (u,v,w,z).
We again get a colouring of G

In each of the graphs which cause Algorithm 2.1 to cycle, the missing
vertex z is adjacent to a 5-cycle (u,v,w,z,y), which is in turn adjacent to
another 5-cycle (a,b,c,d, e). If every vertex of (u,v, w, z,y) has degree 5 in
G, then there is an adjacent 5-cycle (a, b, ¢, d, e), since G is a triangulation.
This makes it easy to detect whether there is an adjacent 5-cycle. We
modify the algorithm to handle such graphs. Let (u,v,w, z,y) be the outer
pentagon, and let (a, b, c,d, e) be the next pentagon.

4.3 Colouring Algorithm
Given a triangulation G on n vertices.
1. If G has a vertex of degree 3, proceed as in 1.1.
2. If G has a vertex of degree 4, proceed as in 1.2.
3. If G has a vertex of degree 5, let (u,v,w,z,y) be the outer pentagon
of G — z.
3a. If every vertex of (u,v,w,z,y) has degree 5, then (u,v, w,z,y) is
adjacent to another pentagon (a,b, ¢,d, e). Construct H by delet-
ing the pentagon (u,v,w,z,y). Colour H. There are 2 possible
colourings of (a,b, c,d, e) — either (1,2,3,4,2) or (1,2,1,2,3). In
the first case, colour G — z according to Fig. 7a. In the second
case, colour according to Fig. 7b. Assign colour 2 to z.
3b. If there is a vertex of (u,v,w,z,y) with degree greater than 5,
determine whether it is part of a separating 3-cycle or 4-=cycle. If
so, proceed as in 4.1 or 4.2.
3c. Otherwise (u, v, w,x,y) is not adjacent to a pentagon, and has no
vertex forming part of a separating 3-cycle or 4-cycle. Proceed as
in Algorithm 2.1.

A proof that Algorithm 4.3 always succeeds would be a proof of the 4-
Colour Theorem. If there is any proof of the 4-Colour Theorem which
avoids computers to check irreducible configurations, it may follow from
this algorithm, which is based on the simple idea of iterating Kempe’s



technique. The existence of the C K-family of graphs with their remarkable
properties in relation to the algorithm strengthens this idea.

Fig. 7, Colouring (u,v,w,z,y)

There is another technique which can be used to colour the C K-family
of graphs. The colour interchanges performed by Algorithm 2.1 are for
every colour pair except (1,2) and (3,4). Notice that in the colouring G 4,
of Fig. 4, vertices w' and z’ are part of a separating 6-cycle coloured 3 and
4. If we interchange colours in K'?(u'), the result is to destroy the w/w’-
Kempe chain. Similarly, if we interchange colours in K34(w') in Gpg,, we
destroy the v/w’-Kempe chain. Algorithm 2.1 could be modified to count
the iterations. If it finds that a graph G causes 20 iterations, it could then
interchange colours in one of K12(u') or K3*(w'), depending on whether a
separating 6-cycle containing w’ and z’ exists.

Complexity of Algorithm 4.3

Each step of Algorithm 4.3 can be programmed to run in linear time. If
the number of times that Algorithm 2.1 must iterate can be limited to a
constant k (say k < 20), then the entire algorithm will run in quadratic
time. Let G have n vertices. Since G is a planar triangulation, it has 3n—6
edges. The degrees of the vertices of G can be computed by summing the
incident edges for each vertex v, and storing the results in an array. They
must also be sorted into buckets according to degree 3, 4, 5, and more than
5. These steps can be done in O(n) time.

A vertex z of minimum degree is then chosen. If z has degree 3, the
algorithm colours G — z recursively. It takes O(n) steps to do this, and
re-attach z. If z has degree 4, two Kempe components may have to be
constructed. O(n) steps are required to build a Kempe component and
interchange colours. Thus, O(n) steps are required.

If 2z has degree 5, we must determine whether a vertex of the outer
pentagon (u,v,w,z,y) is incident on a separating 3-cycle or 4-cycle. We



first check whether each vertex has degree 5 in G. Refer to Fig. 6. Con-
sider vertex u. If u has degree 5, triangles (u,v,d), (y,u,c), and (v,d,c)
are uniquely determined, as G is a triangulation. None of these can be
separating cycles. If u has degree 6 or more, we take each adjacent vertex ¢
in turn, and test whether it is adjacent to v and y. If we find such a vertex
t, it determines a triangle, say (u,v,t). It is easy to determine whether
this is a separating 3-cycle. We do this for each vertex on the outer pen-
tagon, and determine the incident separating 3-cycles in O(n) time. This
may also determine 5 vertices a, b,c,d,e, as in Fig. 6. We now take each
of these vertices in turn, and decide whether there is a vertex t adjacent
to 2 consecutive vertices of this sequence. Every separating 4-cycle can be
detected in this way. O(n) steps are required.

If 5 vertices a, b, ¢, d, e adjacent to u, v, w,z,y as in Fig. 6 do not exist,
then G cannot be in the CK family of graphs, and Algorithm 2.1 is applied.
Algorithm 2.1 must build a number of Kempe components, and interchange
colours in them. A breadth-first seach can build a Kempe component in
O(n) steps. It also takes O(n) steps to interchange colours. Thus, each iter-
ation of 2.1 is linear. If the number of iterations is bounded by a constant,
the complexity of Algorithm 2.1 will also be linear.

As there are n vertices in G, and O(n) steps is required to colour each
vertex, the complexity of Algorithm 4.3 is O(n?).
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