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Abstract. Let G be a unicyclic graph on n 3 vertices. Let 
A(G) be the adjacency matrix of G. The eigenvalues of A(G) 
are denoted by .A1 (G) .A2 (G) · · · >-n(G), which are called 
the eigenvalues of G. Let the unicyclic graphs G on n vertices be 
ordered by their least eigenvalues An( G) in non-decreasing order. 
For n 14, the first six graphs in this order are determined. 
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1 Introduction 

Let G be a simple graph with vertex set V(G) and edge set E(G). Let 
A(G) be the adjacency matrix of G, and I be the identity matrix. The 
characteristic polynomial det(xi-A(G)) of A( G) is called the characteristic 
polynomial of G, and is denoted by ¢(G,x). The eigenvalues of A(G) are 
denoted by .A 1 (G) .A 2 (G) · · · >-n(G), which are called the eigenvalues 
of G. In particular, we say >-n(G) the least eigenvalue of G. 

By Perron-Frobenius Theorem [4], for a connected graph G, correspond-
ing to >.1 (G), there is a unit eigenvector x = (x1, x2, ... , Xn)T with positive 
entries, known as the principal eigenvector of G, and .A1(G) ->.n(G) 
with equality if and only if G is bipartite. By interlacing Theorem [4], 
An (G) :::; -1 if G has at least one edge. 

The evaluation of graph spectral properties is an important topic in 
graph spectral theory. In the past several decades, many results on the 
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largest eigenvalue of graphs were determined, see, e.g., [1, 5, 8, 9, 10, 13, 
14, 17]. Recently, the least eigenvalue of graphs has received more and 
more attentions. A lot of results on the least eigenvalue of graphs with 
some restriction can be found in [2, 3, 7, 11, 12, 15, 16, 18]. 

In this paper, we focus on the unicyclic graphs (the graphs with a 
unique cycle). Fan et al. [7] determined the unique graph with minimum 
least eigenvalue among the set of unicyclic graphs. Liu et al. [11] char-
acterized the unique graph with minimum least eigenvalue among the set 
of unicyclic graphs with given number of pendant vertices (vertices with 
degree one). Zhai et al. [18] characterized the unique graph with minimum 
least eigenvalue among the set of unicyclic graphs with given diameter. 

In this paper, we determine the first six minimum least eigenvalues 
among the set of n-vertex unicyclic graphs, where n 14, and the corre-
sponding graphs whose least eigenvalues achieve these values. 

2 Preliminaries 

Let Pn and Sn be respectively the path and the star on n 1 vertices. Let 
en be the cycle on n 3 vertices. 

First we give some lemmas which will be used in our proof. 

Lemma 2.1. [4] Let u be a vertex of a graph G, cp(u) be the set of the 
circuits containing u, and V ( Z) be the set of vertices in the circuit Z. 
Then 

¢(G,x)=x·¢(G-u,x)- L cjJ(G-u-v,x)-2 L ¢(G-V(Z),x), 
uvEE(G) ZEcp(u) 

where ¢(G- u- v,x) = 1 ifG P2, ¢(G- V(Z),x) = 1 ifG Cn. 

In the following, we use Lemma 2.1 to calculate the characteristic poly-
nomial ¢( G, x) of a graph G by setting u to be a vertex of maximum degree 
in G. 

Lemma 2.2. [6, 10] Let G be a connected non-trivial graph, and H be a 
proper spanning subgraph of G. Then ¢( H, x) > ¢( G, x) for x )'1 (G). 

Let x be a unit eigenvector of G corresponding to >'1 (G) or An (G). We 
say xv the element of x corresponding to v E V (G). 

Lemma 2.3. [1, 6, 14] Let G be a connected graph, rs E E(G) and rt rf_ 
E(G). Let G' be the graph obtained from G by deleting the edgers and 
adding the edge rt. Let x (x', respectively) be the principal eigenvector of 
G ( G', respectively). If Xt X 8 , then >.1 ( G') > >.1 (G) and > 
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Lemma 2.4. [9] Let G be a unicyclic graph on n ;:::: 10 vertices. Then 

At(G) < Vn· 
By Perron-Frobenius Theorem [4], -An(G)::::; At(G), and thus, An(G) > 

-fo. Then we have -fo < An(G) ::::; A3(P3) = -V2 if G is a unicyclic 
graph on n 2: 10 vertices. 

Lemma 2.5. Let G0 be a connected graph with at least three vertices and let 
u and v be two distinct vertices of G0 . Let H 0 be a connected graph with w E 

V(H0 ). Let Gu (Gv, respectively) be the graph obtained from Go and Ho 
by identifying u ( v, respectively) with w. Let x be a unit eigenvector of Gu 
corresponding to An( Gu), and x' be a unit eigenvector of Gv corresponding 
to An ( Gv). Suppose that I xu I ::::; lxv I· 

( i) [7] Then An ( Gu) 2: An ( Gv) with equality if and only if x is also a unit 
eigenvector ofGv corresponding to An(Gv), Xu= Xv and L:xj = 0, 
where the summation takes on all the neighbors of w in H 0 . 

(ii) If An(Gu) > An(Gv), then < 

Proof. We need only to prove (ii). If 1<1 2: then by (i), An(Gu) ::::; 
An ( Gv), a contradiction. Then the result follows. D 

3 The first six minimum least eigenvalues of 
unicyclic graphs 

Let Tn(a, b) be the n-vertex tree obtained by attaching a and b pendant 
vertices to the two end vertices of an edge, respectively, where a+ b = n- 2, 
a, b 2: 0. In particular, if a= 0 orb= 0, then Tn(a, b) = Sn. 

Let da(v) be the degree of v in G for v E V(G). 
Let Cm(Tt, T2, ... , Tm) be the unicyclic graph with unique cycle Cm = 

Vt v2 ... Vm v1 such that the deletion of all edges on Cm results in m vertex-
disjoint trees Tt, T2, ... , Tm with Vi E V(Ti) fori = 1, 2, ... , m. If Ti = Sr, 
we require that the degree of Vi is r + 1. If Ti = Tr (a, b), we require that 
the degree of Vi is a + 3. 

For convenience, let C3(T) = C3(T, St, St), C3(T1, T2) = C3(T1, T2, St), 
C4(T) = C4(T, St, St, St), and CJ(Tt, T2) = C4(T1, T2, St, St)· 

Let lilt (n) be the set of n-vertex unicyclic graphs of form C3(Sa, Sb, Sc), 
where a + b + c = n, a, b, c 2: 1. 

Lemma 3.1. Let G E 1llt(n), where n 2: 14. lfG '¥- C3(Sn-2), C3(Sn-3, S2), 
then An(G) > An(C4(Tn-3(n- 6, 1))). 
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Proof. Let X be a unit eigenvector of C3(Sa, sb, Sc) corresponding to An= 
An(C3(Sa, sb, Sc)). Let Ui be a pendant neighbor of Vi in C3(Sa, sb, Sc) if 
the degree of Vi is at least three, where i = 1, 2, 3. It is easily seen that 

Xv. D . 1 2 3 Xu.;. = or z = , , . 
Suppose that Xu2 = 0 and Xv 1 = Xv2. Then Xv 1 = Xv2 = 0. Since 

AnXv2 = (b- 1)xu2 + Xvl + Xv3' we have Xv3 = 0, and thus Xu3 = 0, i.e., 
x = 0, a contradiction. Then either Xu2 i- 0 or Xv 1 i- Xv2. 

First suppose that a > b. If lxv1 1 < lxv2 1, then by Lemma 2.5 (i) and 
(ii)' 

>-n(C3(Sa, Sb, Sc)) > >-n(C3(Sa-1, Sb+1, Sc)) > · · · > >-n(C3(Sb, Sa, Sc)), 

a contradiction. If lxv1 1 2: lxv2 1, then by Lemma 2.5 (i) and note that either 
Xu2 i- 0 or Xvl i- Xv2' we have An(C3(Sa, sb, Sc)) > An(C3(Sa+l, sb-1, Sc)) 
for b 2: 2. If a = b, then whether lxv1 1 2: lxv2 1 or lxv1 1 < lxv2 1, by 
Lemma 2.5 (i), >-n(C3(Sa, Sb, Sc)) > >-n(C3(Sa+l, Sb-1, Sc)). It follows 
that >-n(C3(Sa, Sb, Sc)) > .An(C3(Sa+l, Sb-1, Sc)) forb 2: 2. 

Let G E 1lh(n), and G '1- C3(Sn-2), C3(Sn-3, S2), where n 2: 14. If 
c = 1, then by the arguments as above, An(G) 2: An(C3(Sn-4, S3)). If 
c 2: 2, then by the arguments as above, >-n(G) 2: >-n(C3(Sn_4, S2, S2)) > 
>-n(C3(Sn-4, S3)). 

We are left to show that An(C3(Sn-4, S3)) > An(C4(Tn-3(n- 6, 1))). 
By Lemma 2.1, 

where 
f(x) = x6 - nx4 + (3n- 12)x2 - 2n + 12, 

g(x) = x4 - nx2 - 2x + 3n- 13. 

Obviously, An(C4(Tn-3(n- 6, 1))) and An(C3(Sn-4, S3)) are respectively 
the smallest roots of f(x) = 0 and g(x) = 0. It is easily checked that 
f(x) = x2g(x) + h(x), where h(x) = 2x3 + x 2 - 2n + 12. For x < -1, 
h'(x) = 2x(3x + 1) > 0, and thus h(x) < h( -1) = -2n + 11 < 0. This 
implies that 

f(r) = r2g(r) + h(r) = h(r) < 0 

for r = An(C3(Sn-4 1 S3)), i.e., An(C4(Tn-3(n- 6, 1))) < An(C3(Sn-4 1 S3)), 
as desired. 0 

Recall that C3 (Tn-2 (a, b)) is the graph obtained by identifying a vertex 
of a triangle with the vertex of degree a+ 1 of Tn-2 (a, b). Let 1U2 ( n) be the 
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set of n-vertex unicyclic graphs of form C3 (Tn_ 2 (a, b)), where a+b = n-4, 
0, b 1. 

Lemma 3.2. Let G E 1U2(n), where n 14. If G '1- C3(Tn-2(n- 5, 1)), 
then An(G) > An(C4(Tn-3(n- 6, 1))). 

Proof. Let G E 1U2(n) and G '1- C3(Tn-2(n- 5, 1)), where n 14. Let x 
be a unit eigenvector of G corresponding to An = An (G). 

If G '1- C3(Tn-2(n- 6, 2)), C3(Tn-2(0, n- 4)), then by Lemma 2.5 (i), 

An(G) min{An(C3(Tn-2(n- 6, 2))), An(C3(Tn-2(0, n- 4)))}. 

By Lemma 2.1, 

¢(C3(Tn-2(n- 6, 2)), x) = xn-6 (x + 1)f(x), 

¢(C3(Tn-2(0, n- 4)), x) = xn-5 (x + 1)g(x), 

where 

f(x) = x5 - x 4 - (n- 1)x3 + (n- 3)x2 + (2n- 8)x- 2n + 12, 

g(x) = x4 - x 3 - (n- 1)x2 + (n- 3)x + 2n- 8. 

Obviously, An(C3(Tn-2(n- 6, 2))) and An(C3(Tn-2(0, n- 4))) are respec-
tively the smallest roots of f(x) = 0 and g(x) = 0. It is easily checked that 
x · g(x) = f(x) + 2n- 12, and thus 

r · g(r) = f(r) + 2n- 12 = 2n- 12 > 0 

for r = An(C3(Tn-2(n- 6, 2))), implying that An(C3(Tn-2(0, n- 4))) < 
An(C3(Tn-2(n- 6, 2))). 

We are left to show that An(C3(Tn-2(0, n- 4))) > An(C4(Tn-3(n-
6, 1))). First we show that At(C3(Tn-2(0, n-4))) < At(C4(Tn-3(n-6, 1))). 
By Lemma 2.1, ¢(C4(Tn-3(n- 6, 1)), x) = xn-6 h(x), where 

h(x) = x 6 - nx4 + (3n- 12)x2 - 2n + 12. 

Obviously, A1(C4(Tn-3(n- 6, 1))) and A1(C3(Tn-2(0, n- 4))) are respec-
tively the largest roots of h(x) = 0 and g(x) = 0. Note that h(x) = 
x(x + 1)g(x) + p(x), where p(x) = 2x3 - x2 - (2n- S)x - 2n + 12. It 
is easily checked that p(-1) = 1 > 0, p(1) = -4n + 21 < 0, p(fo) = 
-3n + 8fo + 12 < 0, and thus p(x) < 0 for 1 x fo. By Lemma 2.4, 
At(C3(Tn-2(0, n- 4))) < fo, now we have 

h(r) = r(r + 1)g(r) + p(r) = p(r) < 0 
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for r = A1(C3(Tn-2(0, n-4))), i.e., >.1(C3(Tn-2(0, n-4))) < >.l(C4(Tn-3(n-
6, 1))). Note that C4(Tn-3(n- 6, 1)) is a bipartite graph, and thus by 
Perron-Frobenius Theorem [4], 

-An(C3(Tn-2(0, n- 4))) < Al(C3(Tn-2(0, n- 4))) 

< Al(C4(Tn-3(n- 6, 1))) = -An(C4(Tn-3(n- 6, 1))), 

i.e., An(C3(Tn-2(0, n- 4))) > An(C4(Tn-3(n- 6, 1))). D 

Let 1lh(n) be the set of n-vertex unicyclic graphs of the form Cl(Sa, Sb), 
where a + b = n - 2, a b 1. 

Lemma 3.3. Let G E 1U3(n), where n 14. IJG C4(Sn-3), Cl(Sn-4, S2), 
then An(G) > An(C4(Tn-3(n- 6, 1))). 

Proof. Let G E 1U3(n) and G C4(Sn-3), Cl(Sn-4, S2), where n 14. 
Note that G is a bipartite graph, and thus An( G)= ->.1(G). We need only 
to show that >.1(G) < Al(C4(Tn-3(n- 6, 1))). 

Since b 3, it follows from Lemma 2.3 that >.1(G) >.1(CJ(Sn-5, S3)). 
We are left to show that >.l(Cl(Sn-5, S3)) < >.l(C4(Tn-3(n- 6, 1))). 

By Lemma 2.1, 

¢(CJ(Sn-5, S3),x) = xn-6 [x6 - nx4 + (4n- 20)x2 - 2n + 12], 

¢(C4(Tn-3(n- 6, 1)),x) = xn-6 [x6 - nx4 + (3n -12)x2 - 2n + 12], 

and thus, 

¢(CJ (Sn-5, S3), x)- ¢(C4(Tn-3(n- 6, 1)), x) = xn-4(n- 8) > 0 

for x 1, i.e., >.l(CJ(Sn-5,S3)) < >.l(C4(Tn-3(n- 6, 1))). 

Lemma 3.4. For n 14, 

>-n(C4(Tn-3(n- 6, 1))) > >-n(CJ(Sn-4, S2)) 

> >-n(C3(Sn-3, S2)) > >-n(C3(Tn-2(n- 5, 1))). 

Proof. By Lemma 2.1, 

¢(C3(Tn-2(n- 5, 1)),x) = xn-6 (x2 -1)fi(x), 

¢(C3(Sn-3, S2), x) = Xn- 4 f2(x), 

¢(CJ(Sn-4, S2), x) = Xn-6 h(x), 
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where 
fl(x) = x 4 - (n- 1)x2 - 2x + n- 5, 

h(x) = x4 - nx2 - 2x + 2n- 7, 

h(x) = x6 - nx4 + (3n- 13)x2 - n + 5. 

Obviously, An(C3(Tn-2(n-5, 1))), An(C3(8n-3, 82)), An(Cl(8n-4, 82)) are 
respectively the smallest roots of fl(x) = 0, h(x) = 0, h(x) = 0. 

Note that fl(x) = h(x) + x 2 - n + 2. It is easily checked that /2(0) = 
2n -7 > 0, /2( -V'i) = 2V2- 3 < 0, /2( -Jn- 2) = 2yfn- 2-3 > 0, and 

An(C3(8n-3, 82)) < 0. Now we have 

f1 ( r) = h ( r) + r2 - n + 2 = r2 - n + 2 < 0 

for r = An(C3(8n-3, 82)), i.e., An(C3(Tn-2(n- 5, 1))) < An(C3(8n-3, 82)). 
By direct calculation, An(C3(8n-3, 82)) < An(Cl(8n-4, 82)) for 14 ::; 

n ::; 19. Suppose that n 20. Note that x 2 h(x) = h(x) + g(x), where 
g(x) = -2x3 - (n- 6)x2 + n- 5. Then for -yn < x::; -V2, 

g'(x) -2x(3x + n- 6) 

> -2x[3( -y'n) + n- 6] 
-2x(n- 3y'n- 6) 

> -2x(20- 3/20- 6) > 0, 

implying that g(x) ::; g( -V'i) = -n + 7 + 4V'i < 0. It follows that 

r2 h(r) = h(r) + g(r) = g(r) < 0 

for r = An(Cl(8n-4, 82)), i.e., An(C3(8n-3, 82)) < An(Cl(8n-4, 82)). 
Now we show that An(CJ(8n-4, 82)) < An(C4(Tn-3(n- 6, 1))). Note 

that the two graphs are both bipartite graphs. Then we need only to 
show that Al(CJ(8n-4, 82)) > Al(C4(Tn-3(n- 6, 1))). Using Lemma 2.1 
toG= CJ(8n_4, 8 2) by setting u to be the unique pendant neighbor of v2, 

and toG= C4(Tn-3(n-6, 1)) by setting u to be the unique pendant vertex 
which is not incident with v 1 , 

It is easily seen that Tn_ 2 (n - 5, 1) is a proper spanning subgraph of 
C4(8n-5), by Lemma 2.2, ¢(Tn-2(n- 5, 1), x) > ¢(C4(8n-5), x) for x 
Al(C4(8n-5)), and thus, ¢(CJ(8n-4, 82),x) < ¢(C4(Tn-3(n- 6, 1)), x) for 

Al(C4(8n-5)), i.e., Al(CJ(8n-4, 82)) > Al(C4(Tn-3(n- 6, 1))). D 
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Lemma 3.5. [18] Let G be ann-vertex unicyclic graph with diameter four, 
where n 2: 10. If G -;p C4(Tn-3(n- 6, 1)), then An(G) > An(C4(Tn-3(n-
6, 1))). 

Lemma 3.6. [11] Let U n,p be the n-vertex ( unicyclic) graph obtained by 
attaching p paths of almost equal lengths to one vertex of a quadrangle. 
Then Un,p for 1 :::; p :::; n - 4 is the unique graph with minimum least 
eigenvalue among the set of unicyclic graphs with n vertices and p pendant 
vertices. 

The following result was shown in [7, 15]. For completeness, we give a 
different proof here. 

Proof. By Lemma 2.1, 

where 
f(x) = x 4 - nx2 - 2x + n- 3, 

g(x) = x 4 - nx2 + 2n- 8. 

Obviously, An(C3(Sn-2)) and An(C4(Sn-3)) are respectively the smallest 
roots of f(x) = 0 and g(x) = 0. It is easily checked that f(x) = g(x) -
2x- n + 5. Note that -2x- n + 5 < 0 for x > -y'n, and thus f(r) = 
g(r)- 2r- n + 5 < 0 for r = An(C4(Sn-3)), implying that An(C3(Sn-2)) < 
.An(C4(Sn-3)). D 

Note that there are exactly n - 4 pendant vertices in C3 (Tn_ 2 (n -
5, 1)), and C4(Sn-3) Un,n-4, by Lemma 3.6, An(C3(Tn-2(n- 5, 1))) > 
An(C4(Sn-3)), together with Lemma 3.7, we have 

Lemma 3.8. For n 2: 14, we have 

Combining Lemmas 3.4 and 3.8, we have 

Lemma 3.9. For n 2: 14, 

.An(C4(Tn-3(n- 6, 1))) > .An(Cl(Sn-4, S2)) 
> .An(C3(Sn-3, S2)) > .An(C3(Tn-2(n- 5, 1))) 

> .An(C4(Sn-3)) > .An(C3(Sn-2)). 
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Theorem 3.1. The least eigenvalues of n-vertex unicyclic graphs with n ;::: 
14 may be ordered by the following inequalities, where G is an n-vertex 
unicyclic graph different from any other graph in the inequalities: 

>-n(G) > >-n(C4(Tn-3(n- 6, 1))) > >-n(CJ(8n-4, 82)) 
> >-n(C3(8n-3, 82)) > >-n(C3(Tn-2(n- 5, 1))) 

> >-n(C4(8n-3)) > >-n(C3(8n-2)), 

and the least eigenvalues of the graphs C3(8n-2), C4(8n-3), C3(Tn-2(n-
5, 1)), C3(8n-3, 82), Cl(8n-4, 82), C4(Tn-3(n- 6, 1)) are respectively the 
smallest roots of the equations on x as follows: 

x 3 - x 2 - (n- 1)x + n- 3 = 0, 

x 4 - nx2 + 2n- 8 = 0, 

x 4 - (n- 1)x2 - 2x + n- 5 = 0, 

x 4 - nx2 - 2x + 2n - 7 = 0, 

x 6 - nx4 + (3n - 13)x2 - n + 5 = 0, 

x 6 - nx4 + (3n - 12)x2 - 2n + 12 = 0. 

Proof. Let G be an n-vertex unicyclic graph, and let p be the number of 
pendant vertices of G. Obviously, 0:::; p:::; n- 3. 

If p = 0, i.e., G Cn, then by interlacing Theorem [4], 

>-n(G) 2: -2 > -2.13578 .>.5(C4(82)) 2: >-n(C4(Tn-3(n- 6, 1))), 

and thus, An( G)> An(C4(Tn-3(n- 6, 1))). 
Suppose that 1 :::; p:::; n- 6. For Un,p, we may choose a path on three 

vertices, say uvw, outside the quadrangle of Un,p, where u is a pendant 
vertex of Un,p, v is a vertex of degree two. Let G' be the graph obtained 
from Un,p by deleting the edge uv and adding the edge uw. By Lemma 2.3, 
AI(Un,p) < AI(G'). Since both Un,p and G' are bipartite graphs, An(Un,p) > 
An(G'). Note that there are p + 1 pendant vertices in G', by Lemma 3.6, 
An(G') 2: An(Un,p+I). Clearly, Un,n-5 C4(Tn-3(n-6, 1)). Now it follows 
that 

An(Un,p) > An(Un,p+I) > · · · > An(Un,n-5) = An(C4(Tn-3(n- 6, 1))). 

If p = n- 5, then by Lemma 3.6, An( G) > An(C4(Tn-3(n- 6, 1))) if 
G -;p C4(Tn-3(n- 6, 1)). 
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We have shown that An(G) > An(C4(Tn-3(n-6, 1))) if G C4(Tn-3(n- · 
6, 1)) and 0::; p::; n- 5. 

Suppose that p = n - 4, n - 3. Denote by r the cycle length of the 
unique cycle of G. Then r = 3, 4. If G rl. lU1 (n) U lU2(n) U lU3(n), then the 
diameter of G is four, by Lemma 3.5, An( G) > An(C4(Tn-3(n- 6, 1))). If 
G E lU1(n) UlU2(n)UlU3(n), and G C3(Sn-2), C3(Sn-3, 82), C3(Tn-2(n-
5, 1)), C4(Sn-3), Cl(Bn-4, 82), then by Lemmas 3.1, 3.2, 3.3, An(G) > 
An(C4(Tn-3(n- 6, 1))). Now the result follows from Lemma 3.9 easily. D 
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