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Abstract 

A two-character set is a set of points of a finite projective space 
that has two intersection numbers with respect to hyperplanes. Two-
character sets are related to strongly regular graphs and two-weight 
codes. In the literature, there are plenty of constructions for (non-
trivial) two-character sets by considering suitable subsets of quadrics 
and Hermitian varieties. Such constructions exist for the quadrics 
Q+(2n -1,q) PG(2n -1,q), Q-(2n + 1,q) PG(2n + 1,q) and 
the Hermitian varieties H(2n -1, q2 ) PG(2n -1, q2), H(2n, q2 ) 

PG(2n, q2 ). In this note we show that every two-character set of 
PG(2n, q) that is contained in a given nonsingular parabolic quadric 
Q(2n, q) PG(2n, q) is a subspace of PG(2n, q). This offers some 
explanation for the absence of the parabolic quadrics in the above-
mentioned constructions. 
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1 Motivation and main result 

A set X of points of the projective space PG(k - 1, q) is called a two-
character set with intersection numbers h1 and h2 if every hyperplane of 
PG(k-1, q) intersects X in either h1 or h2 points. With every two-character 
set, there is associated a two-weight code and a strongly regular graph, see 
Delsarte [12] and Calderbank & Kantor [6]. A nonempty proper subspace 
of PG(k- 1, q) is an example of a (trivial) two-character set. 

Many of the known constructions for two-character sets are related to 
finite polar spaces. In this note, we are interested in sets of points of 
finite polar spaces that are two-character sets of their ambient projective 
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spaces. In the literature, there are plenty of constructions for obtaining 
such two-character sets. In the overview we give below, P denotes one of 
the following polar spaces of rank n 2: • Q(2n, q); • Q+(2n- 1, q); • 
Q- (2n + 1, q); • H(2n- 1, q) with q a square; • H(2n, q) with q a square. 

An m-ovoid of P is a set of points intersecting each maximal subspace 
of P in precisely m points. Examples of m-ovoids arise from the so-called 
m'-systems of P. These nice sets of m'-dimensional subspaces of P were 
introduced by Shult and Thas [23]. In [23], it was proved, among other 

things, that the union of the subspaces of an m'-ovoid of Pis a 
ovoid of P. If Pis one of the polar spaces H(2n,q), Q-(2n + 1,q), then 
every m-ovoid of P is a two-character set of the ambient projective space 
E, see Bamberg, Kelly, Law & Penttila [1] and Bamberg, Law & Penttila 
[2]. In particular, the union of the subspaces of an m'-system of P is a 
two-character set of E. 

The of Q-(5,q), q odd, are also known as hemisystems. 
They were first studied by Segre [22]. Constructions of hemisystems can 
be found in the papers [10, 11, 22]. 

If X is a set of points of P, then the total number of ordered pairs of 
distinct collinear points of Pis at most >-;l · lXI· ( + (q- 1)), with A 
denoting the total number of points contained in a given maximal subspace 
of P. If equality holds, then X is called a tight. Tight sets were introduced 
by Payne [21] for generalized quadrangles and by Drudge [13] for arbitrary 
polar spaces. IfP is one of the polar spaces H(2n-1, q), Q+(2n-1, q), then 
every tight set of P is a two-character set of the ambient projective space, 
see Bamberg, Kelly, Law & Penttila [1] and Bamberg, Law & Penttila [2]. 

The tight sets of the hyperbolic quadric Q+(5, q) are related to the 
so-called Cameron-Liebler line classes of PG(3, q). Recall that a spread 
of PG(3, q) is a set of lines partitioning its point set. A set C of lines of 
PG(3, q) is said to be a Cameron-Liebler line class if the number 1£ n Sl 
is independent of the spread S of PG(3, q). Sets of lines satisfying this 
property were first studied by Cameron and Liebler in [7]. By Drudge [13], 
the Cameron-Liebler line classes correspond via the Klein correspondence 
to the tight sets of Q+(5, q). Nontrivial examples of Cameron-Liebler line 
classes of PG(3, q) can be found in [5, 14, 15]. 

Further constructions of tight sets of the polar spaces Q+ (2n - 1, q), 
H(2n- 1, q), and of m-ovoids or m'-systems of the polar spaces H(2n, q), 
Q-(2n + 1,q) can be found in the papers [1, 4, 9, 16, 17, 18, 23]. By a 
procedure referred to as "field-reduction" in Kelly [20], tight sets and m-
ovoids of these polar spaces will give rise to further examples of tight sets 
and m-ovoids and (hence) also to further examples of two-character sets. 

The above discussion shows that there are plenty of constructions for two-
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character sets that appear as subsets of quadrics or Hermitian varieties of 
finite projective spaces. An attentive reader might have noticed that none of 
the above constructions involves a parabolic quadric Q(2n, q) PG(2n, q). 
This is not a coincidence. The following theorem, which is the main result 
of this note, gives an explanation for this fact. 

Theorem 1.1 Let X be a set of points of Q(2n, q), n 2: 2, which is a two-
character set of the ambient projective space PG(2n, q) of Q(2n, q). Then 
X is the set of points of a subspace of Q(2n, q). 

So, in future attempts to construct new two-character sets related to polar 
spaces, one should not spent any energy in those sets of points that can 
occur as subsets of nonsingular parabolic quadrics. Other nonexistence re-
sults for certain classes of two-character sets can be found in the literature, 
see e.g. the papers [3] and [8]. 

2 Proof of Theorem 1.1 

Let Q(2n, q) be a nonsingular parabolic quadric of PG(2n, q), n 2: 2. The 
) quadric Q(2n, q) contains 'lj;(2n, q = 9_J: points. There are three pos-

sibilities for a hyperplane a of PG(2n, q), see e.g. Hirschfeld and Thas 
[19]. 

(1) a is a tangent hyperplane. If a is tangent to Q(2n, q) at the point 
x, then an Q(2n, q) is a cone of the form xQ(2n- 2, q), where Q(2n- 2, q) 
is a nonsingular parabolic quadric of a hyperplane of a not containing x. 
Observe that Ian Q(2n, q)l = lxQ(2n- 2, q)l = 92:-11-1. 

(2) a is a non-tangent hyperplane of type Q+(2n- 1, q), or shortly a 
Q+(2n- 1, q)-hyperplane. This means that an Q(2n, q) is a nonsingular 
hyperbolic quadric of a. Observe that Ian Q(2n, q)l is equal to 1jJ+(2n-
1, q) := IQ+(2n- 1, q)l = 92:-11-1 + qn-1 = 

(3) a is a non-tangent hyperplane of type Q-(2n- 1, q), or shortly a 
Q- (2n - 1, q)-hyperplane. This means that an Q(2n, q) is a nonsingular 
elliptic quadric of a. Observe that lanQ(2n, q) I is equal to 1/J- (2n -1, q) := 
IQ-(2n -1, q)l = 92:=-11-1 - qn-l = 

So, Q(2n, q) itself is not a two-character set since there are three possible 
intersection sizes with hyperplanes. In the proof of Theorem 1.1, we have 
to make use of the following lemma. 
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Lemma 2.1 (1) There are precisely 92niqn non-tangent hyperplanes of 
2n n 

type Q+(2n- 1, q) non-tangent hyperplanes of type Q-(2n-
1, q). 

(2) Through every point ofQ(2n,q), there are precisely q"(q"; 1 + 1) non-

tangents hyperplanes of type Q+(2n -1, q) and q"(q"; 1
- 1) non-tangent hy-

perplanes of type Q- (2n - 1, q). 
(3) Through every two distinct collinear points of Q(2n, q), there are 

precisely qn(qn; 2 +1) non-tangent hyperplanes of type Q+(2n- 1, q) and 

qn(qn; 2
- 1) non-tangent hyperplanes of type Q-(2n -1, q). 

( 4) Through every two non-collinear points ofQ(2n, q), there are precisely 
non-tangent hyperplanes of type Q+(2n-1, q) and 

non-tangent hyperplanes of type Q-(2n -1, q). 

Proof. This can easily be verified by means of double counting, taking 
into account some elementary properties of quadrics and the precise val-
ues of the numbers 1j;(2n,q), 1j;+(2n -1,q) and 1/J-(2n -1,q). For Claim 
(1), see e.g. Hirschfeld and Thas [19, Section 22.8]. Claims (2), (3) and 
(4) follow from Claim (1) and the fact that the group of collineations of 
PG(2n, q) stabilizing Q(2n, q) acts transitively on the points of Q(2n, q), 
the ordered pairs of distinct collinear points of Q(2n, q) and the ordered 
pairs of noncollinear points of Q(2n, q). • 

Now, let X be a set of points of Q(2n, q) that is a two-character set of 
the projective space PG(2n, q). Let h1 and h2 denote the two intersection 
numbers. Let N 1 denote the total number of ordered pairs of distinct 
collinear points of X. For every hyperplane a of PG(2n, q), we define 

(":=IXnal. 

Summing over all hyperplanes a of PG(2n, q), we find by Lemma 2.1 that 

q2n+l _ 1 

q-1 

2n 1 lXI· q - , 
q-1 

q2n-1 _ 1 
lXI· (IXI-1) · , q-1 
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Putting La(ta- hl)(ta- h2) equal to 0, we find 

q2n-1 _ 1 q2n _ 1 q2n+1 _ 1 
IXI2· 1 +IXI·q2n-1-IXI· ·(h1+h2)+ ·h1h2=0. 

q- q-1 q-1 
(1) 

Summing over all Q+ (2n-1, q)-hyperplanes of PG(2n, q), we find by Lemma 
2.1 that 

a 

a 

a 

a 

q2n +qn 

2 

qn(qn-1 + 1) 
lXI· 2 , 

qn(qn-2 + 1) ( ) 
N1 · 2 + lXI· (IXI-1)- N1 

qn-1(qn-1 + 1) 
2 

qn _ qn-1 2 qn-1(qn-1 + 1) 
N1 · 2 + lXI · 2 

qn-1(qn-1 + 1) 
-lXI· 2 , 

qn _ qn-1 2 qn-1(qn-1 + 1) 
N1 · 2 + lXI · 2 

(qn-1 + 1)(qn _ qn-1) 
+ lXI· 2 . 

Putting La(ta - h1)(ta- h2) equal to 0, we find 

N1 · (q- 1) + IXI2 · (qn- 1 + 1) + lXI · (qn- 1 + 1)(q- 1) 
- lXI · (qn + q) · (h1 + h2) + (qn+ 1 + q) · h1h2 = 0. (2) 

Summing over all Q-(2n -1,q)-hyperplanes a of PG(2n,q), we find by 
Lemma 2.1 that 

a 

a 

a 

q2n _ qn 

2 
qn(qn-1 _ 1) 

lXI· 2 , 

qn(qn-2 -1) ( ) 
N1 · 2 + lXI · (lXI - 1) - N1 
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qn _ qn-1 2 qn-1(qn-1 _ 1) 
-N1 · 2 + lXI · 2 

- lXI· 1)' 
qn _ qn-1 2 qn-1(qn-1 _ 1) 

-N1 · 2 + lXI · 2 

(qn-1 -1)(qn _ qn-1) 
+ lXI· 2 · 

-N1 · (q- 1) + IXI 2 · (qn- 1 - 1) + lXI· (qn- 1 - 1)(q- 1) 
- lXI · (qn- q) · (h1 + h2) + (qn+ 1 - q) · h1h2 = 0. (3) 

Eliminating N1 from equations (2) and (3), we find 

From (1) and ( 4), we find 

h h - IXI 2 - lXI 
1 2-

q 
(5) 

and hence 
IXI-1 

{h1, h2} = {lXI, }. 
q 

(6) 

Combining (3) and (5), we can calculate N 1 . We find 

N1 = lXI· (lXI- 1). (7) 

By (7), every two distinct points of X are collinear on Q(2n, q). Hence, 
< X > is a subspace of Q(2n, q). Put k := dim < X >. By (6), every 
hyperplane of < X > contains precisely points. Counting in two 
different ways the number of pairs (x, U), where x EX and U a hyperplane 
of< X> containing x, we find 

qk+1 - 1 lXI - 1 qk - 1 
q _ 1 · q = lXI · q=-1· 

It follows that 
qk+1- 1 

lXI= · q-1 
Hence, X is the whole set of points of the subspace <X > of Q(2n, q). 
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