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Abstract

Packing and covering are dual problems in graph theory. A graph
G is called H -equipackable if every maximal H -packing in G is
also a maximum H -packing in G. Dually, a graph G is called
H -equicoverable if every minimal H -covering in G is also a mini-
mum H -covering in G. In 2012, Zhang characterized two kinds of
equipackable paths and cycles: Pi; -equipackable paths and cycles,
Mk-equipackable paths and cycles. In this paper, Pk-equicoverable
(k > 3) paths and cycles, Mk-equicoverable (k > 2)paths and cycles
are characterized.
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1 Introduction

Packing and covering are dual problems in graph theory. The problem
that we study stems from research of H-decomposable graphs and equipack-
able graphs. The path and cycle on n vertices are denoted by Pn and Cn ,

respectively. In this paper, Denote the edges of Pn by el, e2,'" ,en-I, De-
note the edges of Cn by el, e2, ... .e«. A vertex with degree 1 of a path
is called an end vertex of the path. A matching in the graph G is a set of
independent edges in G. A matching with k(k 1) edges is denoted by
Nlk . Let H be a subgraph of G. By G - H, we denote the graph left after
we delete from G the edges of H and any resulting isolated vertices.

A collection of edge disjoint copies of H, say HI, H2 , ' " ,Hz, where each
Hi(i == 1,2,'" ,l) is a subgraph of G, is called an H -packing in G. A graph
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G is called H -decomposable if there exists an H -packing of G which uses
all edges in G. An H-packing in G with l copies HI,H2 , · · · .H, of His
called maximal if G - E(Hi ) contains no subgraph isomorphic to H.
An H-packing in G with l copies HI, H 2 , · · · .H, of H is called maximum
if no more than l edge disjoint copies of H can be packed into G. A graph
G is called randomly H -decomposable if every maximal H -packing in G
uses all edges in G. A graph G is called H -equipackable if every maximal
H -packing in G is also a maximum H -packing in G. There have been
many results on randomly H -decomposable and H -equipackable graphs:
L. W. Beineke, P. Hamberger and W. D. Goddard ([1]) characterized all ran-
domly Mk-decomposable graphs, all randomly K n -decomposable graphs
and all randomly Pk-decomposable for k == 4,5,6; B. Randerath and P.
D. Vestergaard ([2]) characterized all P3-equipackable graphs; Zhang and
Fan((3]) characterized all M 2-equipackable graphs; Zhang((6]) character-
ized two kinds of equipackable paths and cycles.

An H-covering of G is a set L == {HI, H2 , · · · ,Hz} of subgraphs of G,
where each subgraph Hi is isomorphic to H and every edge of G appears
in at least one member of L. If G has an H-covering, G is called H-
coverable. An H-covering of G with l copies HI, H2 , · · · .H, of H is called
minimal if, for any Hj , 1 Hi - H, is not an H -covering of G. An H-
covering of G with l copies HI, H2, ... .H, of H is called minimum if there
exists no H-covering with less than l copies H. Let c(G; H) denote the
number of H in the minimum H-covering of G. In 2008, Zhang((4]) gave
the dual definition of H-equipackable: H-equicoverable. A graph is called
H-equicoverable if every minimal H-covering in G is also a minimum H-
covering in G. And Zhang characterized all P3-equicoverable graphs. The
path Pn is P3-equicoverable if and only if n == 3, 4, 5, 6, 8. The cycle Cn is
P3-equicoverable if and only if n == 3,4,5,7. Later, Zhang and Lan((5]) gave
some results on M 2-equicoverable graphs, and characterized some kinds of
special M2-equicoverable graphs. The path Pn is M 2-equicoverable if and
only if n == 5,6. The cycle Cn is M 2-equicoverable if and only if n == 4,5.

In this paper, we investigate Pk-equicoverable (k > 3) paths and cycles,
Mk-equicoverable (k > 2) paths and cycles.

We first give one lemma which is crucial to our work:

Lemma 1. Let G be an F -coverable graph and H be an F -coverable sub-
graph of G which satisfy: (1) H is not F-equicoverable; (2) G - H is
F -decomposable. Then G is not F -equicoverable.

Proof. Since H is F-coverable but not F-equicoverable, by the definitions of
coverable and equicoverable, H has at least one minimal F-covering which
is not minimum. And G - H is F-decomposable, that is, G - H has an
F-covering which is also an F-packing. The union of the two F-covering
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mentioned above forms a minimal F-covering which is not minimum. So G
is not F-equicoverable. 0

2 Main results

2.1 Pk-equicoverable (k > 3) paths and cycles

Theorem 2. A path t; is Pi.-equicoueroble if and only if k ::; n < 2k or
n == 3k - 1.

Proof. In each Pk-covering of Pn , el must be covered by HI == {eI,e2,'" ,
ek-I} and en-I must be covered by H 2 == {en-k+I, en-k+2,'" , en-I}. For
the Pk-covering of a path Pn , we have seven cases.

1. n ::; k - 1. Since E, contains no copy of Pi ; Pn can't be Pk -

equicoverable.

2. n == k. It's easy to see the number of Pk in the minimal Pk-covering
of Pn only can be 1. By the definition, Pn is Pk-equicoverable.

3. k+1 < n < 2k-1. It's easy to see c(Pn;Pk) is 2. L == {HI, H2} covers
all edges of Pn . So the number of Pk in the minimal Pk-covering of
Pn only can be 2. By the definition, Pn is Pk-equicoverable.

4. n == 2k. It's easy to see c(Pn ; Pk ) is 3. Besides HI and H 2 , only one
edge has not been covered, and we need only one copy of Pk to cover
it. So the number of Pk in the minimal Pk-covering of Pn only can
be 3. By the definition, Pn is Pk-equicoverable.

5. 2k +1 ::; n ::; 3k - 2. Obviously, c(Pn ;Pk) is 3. There exists a minimal
Pk-covering with 4 copies of Pk denoted by L == {HI, H2, H3, H4 } ,

where H3 == {e2,e3,'" ,ek}, H 4 == {ek+I,ek+2,'" ,e2k-I}' By the
definition, Pn is not Pk-equicoverable.

6. n == 3k - 1. Besides HI and H2, there must be one copy Hi ==
{e., ei+I,'" , ei+k-2} (2 ::; i k) to cover the edge ei: There also
must be one copy HJ == {ej, ej+I, ... , ej+k-2}(k + 1 ::; j ::; i + k - 1)
to cover ei+k-l. Since j ::; i + k - 1 ::; 2k - 1 ::; j + k - 2, HJ also
covers the edges ei+k, ... , e2k-l. L == {HI, H 2, Hi, HJ} contains all
possible minimal Pk-coverings of Pn . So the number of Pk in the
minimal Pk-covering of Pn only can be 4. By the definition, P; is
Pk-equicoverable.

7. n 2:: 3k. n - (2k + 1) == r(mod k - l)(r == 0,1,'" , k - 2), n - (2k +
1 + r) == (k - l)t(t E Z, t 2:: 1). n - (2k + 1) 2:: k - 1.
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(a) 0 r k - 3. Pn - P2k+I +r has (k - l)t(t E Z, t 2: 1) edges, so
Pn - P2k+I+r is Pk-decomposable. Since 2k + 1 2k + 1 + r
3k - 2, from case 5, P2k+I +r is not Pk-equicoverable. By Lemma
1, Pn is not Pk-equicoverable.

(b) r == k - 2. Pn == P4k- 2 or Pn - P4k- 2 is Pk-decomposable. It's
easy to see C(P4k- 2; Pk) is 5. There exists a minimal Pk-covering
of P4k-2 with 6 copies of Pk denoted by L == {HI, H 2,··· ,H6 } ,

where H 3 == {e2' e3, ... ,ek}, H 4 == {ek+I' ek+2, ... ,e2k-I}, H s ==
{e2k-I,e2k,··· ,e3k-3}, H 6 == {e3k-2,e3k-I,··· ,e4k-4},SOP4k-2
is not Pk-equicoverable. By Lemma 1, Pn is not Pk-equicoverable.

From the above, a path Pn is Pk-equicoverable if and only if k n :S 2k
orn==3k-1. D

Theorem 3. A cycle c; is Pk-equicoverable if and only if k :S ti <
r32k1or n == 2k - 1.

Proof. By the symmetry of the cycle, we can choose the first copy of Pk to
be HI == {eI' e2, ... ,ek-I} in this proof. For the Pi; -covering of a cycle
Cn, we have seven cases.

1. ti :S k - 1. Since Cn contains no copy of Pi ; Cn can't be Pi-
equicoverable.

2. n == k. It's easy to see c(Cn ; Pk ) is 2. Besides HI, only one edge has
not been covered, and we need only one copy of Pk to cover it. So the
number of Pk in the minimal Pk-covering of Cn only can be 2. By
the definition, Cn is Pk-equicoverable.

3. k + 1 :S n:S 2k - 2. It's easy to see c(Cn; Pk) is 2.

In the covering, besides the copy HI , there must be another copy
Hi == {e., ei+I,··· ,ei+k-2}(2 :S i :S k) to cover the edge ek, where
for Vex, x f- x mod n.

(a) i + k - 2 2: n, i-I :S k - 1. Then {HI, Hi} is the only possible
minimal Pk-covering of Cn with 2 copies.

(b) i+k-2 :S n-1, since the edge ei+k-I has not been covered, there
must be the third copy H} == {ej, ej+I,··· ,ej+k-2}(k + 1 j :S
i + k - 1) to cover it.

• When i + k - 1 :S n < r32k1, (n + i-I) - (j + k - 2) ==
n + i - j - k + 1 n + (n - k + 1) - (k + 1) - k + 1 ==
2n-3k+1 < 2* 32k -3k+1 == 1. That is, n+i-1 :S j+k-2.
So{H}, Hi} can cover all edges of Cn, HI is redundant. So
when n < r32k 1, there exists no minimal Pk-covering with 3
copies, Cn is Pk-equicoverable.
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• When n 2 r32k l, (n + i-I) - (j + k - 2) == n + i - j -
k + 1 == n + (n - k + 1) - (k + 1) - k + 1 == 2n - 3k + 1 >
2 * 32k - 3k + 1 == 1. That is, n + i-I> j + k - 2. there
exists a minimal Pk-covering with 3 copies of Pk denoted
by H == {HI, HJ, Hi}. so C« isn't Pk-equicoverable.

4. n == 2k - 1. Cn is Pk-equicoverable.

In the covering, besides the copy HI , there must be another copy
Hi == {ei, ei+I,··· ,ei+k-2}(2 ::; i ::; k) to cover the edge eke Since
the edge ei+k-I has not been covered, there must be the third copy
HJ == {ej, ej+l,··· ,ej+k-2}(k+l ::; j ::; i+k-l) to cover it. where for
Vex,x f- x mod n. Sincej::; i+k-l < 2k-l::; j+k-2, HJ always
covers the edges ei+k-I, ei+k,··· ,e2k-l. {HI, Hi, HJ} contains all
possible minimal Pk-coverings of Cn. So the number of Pk in the
minimal Pk-covering of Cn only can be 3. By the definition, Cn is
Pk-equicoverable.

5. 2k::; n ::; 3k-3. It's easy to see c(Cn; Pk) is 3. There exists a minimal
Pk-covering with 4 copies of Pi. denoted by L == {HI, H2, H3, H4},
where H2 == {e2,e3,··· ,ek}, H3 == {ek+l,ek+2,··· ,e2k-I}, H4 ==
{en-k+2, en-k+3, ... ,en}. So Cn is not Pk-equicoverable.

6. n == 3k - 2. It's easy to see c(Cn ; Pk ) is 4. There exists a minimal Pk -

covering with 5 copies of Pk denoted by H == {HI, H2, H3, H4, H s},
where

H2 == {e3' e4,··· ,ek, ek+I}, H3 == {ek+l, ek+2,··· ,e2k-2, e2k-I},
H4 == {ek+3, ek+4,··· ,e2k, e2k+I}, Hs, == {e2k+l, e2k+2,··· ,e3k-2, ell·

By the definition, so Cn is not Pk-equicoverable.

7. n 2 3k - 1, n - 2k == r(mod k - 1) (r == 0,1,··· ,k - 2).

(a) 0::; r ::; k - 3.

Cn - P2k+l+r has (k - l)t(t E Z, t 2 1) edges, so Cn - P2k+l+r is
Pk-decomposable. By Theorem 2, P2k+r+ 1 is not Pk-equicoverable.
By Lemma 1, Cn is not Pk-equicoverable.

(h) r==k-2 .

• When n == 4k - 3, it's easy to see C(C4k- 3;Pk) is 5. There
exists a minimal Pk-covering with 6 copies of Pk denoted hy
L == {HI,H2,H3,H4,Hs,H6}' where H2 == {e2,e3,··· ,ek},
H3 == {ek+l, ek+2,· .. ,e2k-I}, H4 == {e2k-l, e2k,· .. ,e3k-3},
H s == {e3k-2, e3k-l, ... ,e4k-4}, H6 == {e3k-l,
e3k, ... ,e4k-3}, so C4k- 3 is not Pk-equicoverahle.
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• When n # 4k - 3, Cn - P4k- 2 is Pk-decomposable. By
Theorem 2, P4k- 2 is not Pk-equipackable. By Lemma 1, c;
is not Pk-equicoverable.

From the above, Cn is Pk -equicoverable if and only if k < n < r 32k l or
n==2k-1.

D

2.2 Mk-equicoverable (k > 2) paths and cycles

To get the results, we first give several lemmas.

Lemma 4. Let P; be an Mc-couerable path, then c(Pn ; Mk) == rnk"ll.

Proof. Since P; is Mk-coverable, by the definition of minimal covering, it
is easy to see c(Pn ; M k ) is at least rnkll. To get the desired result, clearly
it suffices to find a minimal Mk-covering of Pn with rnk"ll copies.

Let E(Pn ) == AUB, where A == {el,e3,es,··· ,e2p-I}, B == {e2,e4,e6,
... , e2q}. Let L == {HI, H 2, ... , l} be a set of subgraphs of Pn , where
H is shown in Fig.1, and let t == n - 1 mod k.

el e3 es ... e2k-1
" ,IV'

HI

e2k(i-I)+1 e2k(i-I)+3 e2k(i-I)+S
"

. .. e4k-1
./

V'

H,;,

e2ki+1 e2ki+3 ... e2p-1 e2 e4 ... e2(k-(p-ki))
" jV'

H';,+I

e2(q+l-t) e2(q+l-t)
"

e2(k-t)
I

Fig.1 L of r;
We claim that each subgraph Hi is isomorphic to Mi; For example, L ==

{HI, H 2 , H 3 , H 4 } is a collection of subgraphs of P17 , whose each subgraph
is isomorphic to M 4 , which is illustrated in Fig.2.

e17 e2 e4 e6

H3

el6 e2 e4 e6
"--v-"

H5

el e3 es e7 eg ell el3 elS
" v

HI H 2

es elO el2 el4
\, ,I

v
H4

Fig.2 L of Pl 7
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Now we prove the above claim. Obviously H, (j i= i+1, ,nkll) is isomor-
phic to M k , we only need to prove H i +1 and Hr¥l is isomorphic to M k ,

respectively. In H i+ l , comparing the subscript of e2ki+1 and e2(k-(p-ki)),

2ki + 1 - 2(k - (p - ki)) == 2p - 2k + 1 2: 2 + 1 > 2(p > k),

e2ki+1 and e2(k-(p-ki)) are not adjacent, and Hi+ 1 has k edges, thus Hi+ 1 is
a copy of Mi: In H rn-,;ll ' comparing the subscript of e2(q+l-t) and e2(k-t),

2(q + 1 - t) - 2(k - t)) == 2(q - k) + 2 2: 2

(since Pn is Mk-coverable, q 2: k holds). That is, e2(q+l-t) and e2(k-t) are
not adjacent, and Hrn-,;ll has k edges, thus Hrn-,;ll is also a copy of Mi;

From the above, we know that L is an Mk-covering of Pn with ,nkll

copies. More specifically, L is a minimal Mk-covering of Pn . This completes
the proof. 0

Lemma 5. In a path Pn , if n - 2k + 1 > ,nkll, then Pn is not M k -

equicoverable.

Proof. First we give a minimal Mk-covering of Pn , say L == {HI, H 2 , · · · ,

H n - 2k+I } , where

HI == {el' e3,· .. ,e2k-3, e2k-l}

H 2 == {e2' e4, ,e2k-2, e2k}

H 3 == {el' e3, ,e2k-3, e2k+l}

H 4 == {el' e3, ,e2k-3, e2k+2}

H n - 2k == {el' e3,· .. ,e2k-3, e n-2}

H n - 2k + 1 == {el' e3,· .. ,e2k-3, en-I}

By Lemma 4, we know c(Pn ; Mk ) is ,nkll. Since n - 2k + 1 > ,nkll, L
is a minimal Mk-covering of Pn which is not minimum. Thus Pn is not
Mk-equicoverable. 0

Lemma 6. Let Cn be an Mv-coueroble cycle, then c(Cn ; M k ) ==

We omit the proof, which is similar to the proof of Lemma 4.

Lemma 7. In a cycle Cn, if n - 2k + 2 > then C; is not M k -

equicoverable.
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Proof. There is a minimal Mk-covering of Cn, say L == {HI, H2, ... , Hn-2k+2},
say

HI == {el,e3,··· ,e2k-3,e2k-l}
H 2 == {el,e3,··· ,e2k-3,e2k}

H3 == {el' e3,··· ,e2k-3, e2k+l}

Hn-2k+1 == {el' e3,··· ,e2k-3, en-I}
Hn-2k+2 == {e2' e4, ... ,e2k-2, en}

By Lemma 6, we know c(Cn;Mk) is Since n - 2k + 2 > L
is a minimal Mk-covering of Cn which is not minimum. Thus Cn is not
Mk-equicoverable. 0

Theorem 8. A path Pn is Mk-equicoverable if and only if n == 2k + 1.

Proof. For the Mk-covering of a path Pn , we have four cases.

1. n::; 2k. Since Pn is not Mk-coverable, Pn is not Mk-equicoverable.

2. n == 2k + 1. There must be one copy HI == {e2' e4, ... ,e2k} to cover
e2. And there also must be another copy H 2 == {e I, e3, ... ,e2k-l} to
cover e2k-l. Then L == {HI, H2} covers all edges of the path Pn , so
L == {HI, H2} is the unique minimal Mk-covering of Pn. The number
of M k in the minimal Mk-covering of Pn only can be 2, so Pn is
Mk-equicoverable.

3. When n == 2k + 2, it's easy to see c(Pn ; M k ) is 3. There exists a mini-
mal Mk-covering with 4 copies of M; denoted by H == {HI, H2, H3, H4},
where

HI == {e2k+l,e2k-3,e2k-S,e2k-7,e2k-9,··· .ei},
H2 == {e2k' e2k-2, e2k-S, e2k-7, e2k-9, ... ,el},
H3 == {e2k+I' e2k-l, e2k-S, e2k-7, e2k-9,··· ,el},
H4 == {e2k+l, e2k-2, e2k-4, e2k-6, e2k-S,· .. ,e2}.

By the definition, so Pn is not Mk-equicoverable.

4. When n 2k + 3, it's easy to verify that n - 2k + 1 > inkll, by
Lemma 5, Pn is not Mk-equicoverable, a contradiction.

From the above, a path Pn is Mk-equicoverable if and only if n
2k + 1. 0

Theorem 9. A cycle Cn is Mi.-equicouerable if and only if n
n==2k+1.
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Proof For the Mk-covering of a cycle Cn, we have four cases.

1. «< 2k-l. Since Cn is not Mk-coverable, Cn is not Mk-equicoverable.

2. n == 2k. HI == {e2' e4, ... ,e2k} is the unique copy of Mi. to cover
e2· H2 == {el' e3,' .. ,e2k-l} is the unique copy of Mi. to cover e2k-l'
And L == {HI, H2} covers all edges of the cycle Cn, so L == {HI, H 2}
is the unique minimal Mk-covering of Cn' The number of M k in the
minimal Mk-covering of Cn only can be 2, so Cn is Mk-equicoverable.

3. n == 2k + 1. We use induction on k to prove Cn is Mk-equicoverable.
For k == 2, it's easy to verify that Cs is M 2-equicoverable. For k > 2,
we suppose that the claim is true for k -1. In the following, we prove
the claim is also true for k.

For any Nlk-covering of C2k+1 , say L == {HI, H2,'" ,Hz}(l > 3),
where the elements of Hi are labled in increasing order. Let Ht denote
the set of the former k-1 elements of Hi. Let L * == {Hi, H2,... ,Ht}.

(a) e2k-l is not covered by L*. Thus L* is an Mk-1-covering of
P2k-l or C2k- 2. Whatever P2k- 1 or C2k- 2, there must he one
copy Hi == {el' e3, ... ,e2k-S, e2k-3} to cover e2k-3. There must
be another copy H2 == {e2' e4, ... ,e2k-4, e2k-2} to cover e2.
Hi UH2 is the unique minimal Mk_I-covering of P2k- 1 or C2k- 2.
Since e2k-l,e2k and e2k+1 have not been covered, HI - Hi may
be e2k-1 or e2k,H2 - H2 may be e2k or e2k+l. We have the
following possibilities.

• If HI - Hi == {e2k-l} and H2 - H2 == {e2k}, e2k+1 has not
been covered, there needs only one copy of M k denoted by
H3 to cover e2k+l. So HI uH2uH3 is a minimal Mk-covering
of C2k+1. In the same way, if HI - Hi == {e2k-l} and
H2 - H2 == {e2k+I}, or if HI - Hi == {e2k} and H2 - H2 ==
{e2k+l}, HI U H 2 U H3 is a minimal Mk-covering of C2k+1 .

• If HI - Hi == H 2 - H2 == {e2k}, e2k-l and e2k+l have not
been covered. Since e2k-l is not covered by H*, there must
be the unique copy H3 == {el' e3, ... ,e2k-3, e2k-l} to cover
e2k-I' Since Hi c H3, HI - Hi C H2, H2 U H3 covers
the edge el, e2, ... ,e2k-l, e2k. There needs only one copy of
M, denoted by H4 to cover e2k+l. Thus H2 U H3 U H4 is a
minimal Mk-covering of C2k+l .

(b) e2k-1 is covered by L *. Thus L * is an Mk_I-covering of C2k- l .
By the induction hypothesis, C2k- 1 is Mk_I-equicoverable. So
the number of M k-I in every minimal M k-l-covering of C2k- 1

is 3. We arbitrarily select a minimal Mk-I-covering of C2k- 1
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denoted by Hi, H:;, H3 from L*. Suppose e2k-I E H3, then
H3 - H3 == {e2k+I}. Let E == (HI - Hi) U (H2 - H2), there are
two possibilities.

• If e2k E E, e2k,e2k-I, e2k+1 and all the former edges are all
covered by HI U H2 U H3, so L == {HI, H2, H3} is a minimal
Mk-covering of C2k+ I .

• If e2k t/:. E, since the copy of Mi. covering el doesn't contain
e2k+I, e2k+I can not belong to HI, H2, H3 at the same time.
Thus, we suppose e2k+1 t/:. HI, and e2k t/:. HI, so HI - Hi ==
{e2k-I}, then HI can only be {el' e3,'" ,e2k-3, e2k-I}. So
H 2 - H:; == {e2k+I}. Otherwise.H, == HI' H:; may contain
e2k-I or e2k-2. If H:; contains e2k-I, then e2k-2 is not cov-
ered by Hi U H:;U H3, which contracts to the fact that Hi U
H:; U H3 is an Mk_I-covering of C2k- I . Therefore H:; con-
tains e2k-2. H 2 can only be {e2' e4,' .. ,e2k-2, e2k+I}. HI U
H2 covers the edges el, e2,'" ,e2k-3, e2k-2, e2k-I, e2k+I'
There needs only one copy of Mi; to cover e2k denoted by
H4. HI U H2 U H4 is a minimal Mk-covering of C2k+I .

4. n 2 2k + 2. It's easy to verify that n - 2k + 2 > by Lemma 7,
Cn is not Mk-equicoverable.

From above, we can get the conclusion that the number of Mi; in every
minimal Mk-covering of C2k+1 is 3. Thus Cn is Mk-equicoverable.

So a cycle Cn is Mk-equicoverable if and only if n == 2k or n == 2k+1. 0
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