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MULTI-RESTRAINED STIRLING NUMBERS
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ABSTRACT. Given positive integers n, k, and m, the (n,k)-th m-
restrained Stirling number of the first kind is the number of permu-
tations of an n-set with k disjoint cycles of length < m. Inverting
the matrix consisting of the (n, k)-th m-restrained Stirling number of
the first kind as the (n+1,k+ 1)-th entry, the (n, k)-th m-restrained
Stirling number of the second kind is defined. In this paper, the
multi-restrained Stirling numbers of the first and the second kinds
are studied to find their explicit formulae, recurrence relations, and
generating functions. Also, a unique expansion of multi-restrained
Stirling numbers for all integers n and k, and a new generating func-
tion for the Stirling numbers of the first kind are introduced.

1. INTRODUCTION

For any positive integers n and k, the (n, k)-th Stirling number of the
first kind, denoted by S;(n, k), is defined as (—1)"~* times the number of
permutations of an n-set with k disjoint cycles, and the (n, k)-th Stirling
number of the second kind, denoted by Sa(n, k), is defined as the number
of partitions of an n-set with k nonempty subsets. By convention, the
Stirling numbers are defined for zero n and k: S;(n,0) = S;(0,k) = 0 for
any positive integers n and k, and S;(0,0) =1, for ¢ = 1 or 2.

The n-th falling factorial of an indeterminate z, [z], = z(z — 1)(z —
2)---(z —n + 1), can be expended as a sum of the powers of z, with
Si(n,k) as the coefficient of z¥. Then, the n-th power of z, 2", can be
solved as a sum of the falling factorials of z, with S2(n, k) as the coefficient
of [z]x. That is,

(1.1) [2]n =) Si(n,k)z* : 2 =Y Sp(n,k)[z]x.
k=0 k=0
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Then, the matrices consisting of S;(n, k) as the (n + 1,k + 1)-th entry for
each ¢ = 1 and 2 are inverse to each other, i.e.

[S1(n, k)}n,kZO = [Sa(n, k)];jczo :

The multi-restricted numbers of the second kind are defined by restrict-
ing the size of each subset in partitions of a set. For any positive integers
m, n, and k, the (n,k)-th m-restricted number of the second kind, de-
noted by MJ*(n, k), is defined as the number of partitions of an n-set with
k nonempty subsets, each of size < m [4]. For zero n and k, the multi-
restricted of the second kind are also defined similarly to the the Stirling
numbers: M3*(0,0) = 0 and M3*(n,0) = 0 = M3*(0,k) for any positive
integers n and k.

Inverting the matrix consisting of the multi-restricted numbers of the
second kind, the multi-restricted numbers of the first kind are defined. The
(n, k)-th m-restricted number M{"(n, k) of the first kind is the (n+1,k+1)-
th entry in the inverse of the matrix consisting of M3*(n, k) as the (n +
1,k + 1)-entry.

By the definition, the (n, k)-th m-restricted number of the second kind
is the same as the (n, k)-th Stirling numbers of the second kind, if m > n
or m > n — k. Hence, the matrix [M7*(n,k)|n k>0 is a lower triangular
matrix whose diagonal entries are all 1’s. So is the matrix [M{"(n, k)]n k>0,
and the (n, k)-th m-restricted number of the first kind is also the same as
the (n, k)-th Stirling number of the first kind, if m > n or m > n — k.
Furthermore, the m-restricted numbers of the first kind and second kind
are the same as Stirling numbers of the first kind and second kind, if m is
large enough.

However, the m-restricted numbers of the first kind do not take alter-
nating signs if m > 3, while the Stirling numbers of the first kind do.
Moreover, the signless multi-restricted numbers of the first kind do not
count the number of permutations with a restriction on the length of each
cycle, while the multi-restricted numbers of the second kind do count the
number of partitions with a restriction on the size of each subset. That is,
the signless multi-restricted numbers of the first kind are not the signless
Stirling numbers of the first kind with the restriction on the length of each
cycle in permutations, while the multi-restricted numbers of the second
kind are the Stirling numbers of the second kind with the restriction on the
size of each subset in partitions.

In this paper, we study the so-called (signless) multi-restrained Stirling
numbers of the first kind as the number of permutations of an n-set with
k disjoint cycles, each of the length < m. Section 2 includes the formal
definitions of the (signed and signless) multi-restrained Stirling numbers of
the first and second kinds, their basic properties, and their general schemes.
Section 3 includes the explicit formulae for the multi-restrained Stirling
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numbers of the first kind and the signless multi-restrained Stirling numbers
of the first kind. Section 4 includes two different recurrence relations for the
multi-restrained Stirling numbers of the first kind and second kind, and a
unique expansion of the multi-restrained Stirling numbers for the negative
integers n and k. Section 5 includes a generating function for the multi-
restrained Stirling numbers of the first kind, and a new generating function
for the Stirling numbers of the first kind.

2. MULTI-RESTRAINED STIRLING NUMBERS

The (n, k)-th signless Stirling number of the first kind, denoted by C(n, k),
is the number of permutations of an n-set with k disjoint cycles, i.e.

(2.1) C(n, k) = |Si(n, k).

Since the Stirling numbers of the first kind takes alternating signs, C(n, k)
can be also expressed as C(n, k) = (—1)""*S;(n, k), that is

(2.2) Si(n, k) = (=1)""*C(n, k).

Now, we define the number of permutations of an n-set with k disjoint
cycles restraining the length of each cycle, and obtain a new series of num-
bers approaching to the signless and signed Stirling numbers of the first
kind.

Definition 2.1. For all positive integers n, k, and m, the (n, k)-th signless
m-restrained Stirling number of the first kind, denoted by ™C(n,k), is
defined as the number of permutations of an n-set with k disjoint cycles of
length < m. For the zero n and k, ™C(n, k) is defined as

(1) ™C(0,0) =1;
(2) ™C(n,k) =0, for either n =0 or k = 0.

Definition 2.2. For any nonnegative integers n and k and any positive
integer m, the (n, k)-th m-restrained Stirling number of the first kind, de-
noted by ™S;(n, k), is defined as

(2.3) ™81 (n, k) = (=1)""F.™C(n, k).
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The following table shows the 3-restrained Stirling numbers of the first
kind for n,k =0,1,2,...,7.

381 (n,k) | k=0 1 2 3 4 5 6 7

n=0] 1 0 0 0 0 0 0 0

1, 0 1 0 0 0 0 0 0

2 0 -1 1 0 0 0 0 0

(2.4) 3/ 0 2 -3 1 0 0 0 0
4 0 0 11 -6 1 0 0 0

5/ 0 0 -2 3 -10 1 0 0

6/ 0 0 40 -—135 8 —15 1 0

7] 0 0 0 490 -525 175 —21 1

Since the signless restrained Stirling numbers of the first kind count the
number of permutations with the restriction on the length of each cycle,
whereas the signless Stirling numbers of the first kind count such numbers
without any restriction, the signless restrained Stirling numbers of the first
kind cannot exceed the signless Stirling numbers of the first kind. For some
n, k, and m, the restrained Stirling numbers of the first kind are even the
same as the Stirling numbers of the first kind. Especially when m is large
enough, no cycle length may exceed m.

Lemma 2.3. For any nonnegative integers n and k and any positive integer
m7

(1) [S1(n, k)| < |3(m, k)]

(2) ™S1(n, k) = S1(n, k) if m>norm>n—k;

(3) limy—oo ™S1(n, k) = S1(n, k).
Proof. By Definition 2.1 and 2.2, the results are straightforward except the
case of m > n — k in (2). Suppose there exist m, n, and k such that
m > n — k and ™Si(n,k) # Si(n,k). Then, [™Si(n, k)| # |S1(n, k)|, so
|™S1(n, k)| < |S1(n,k)| by (1). This implies there is a permutation of an
n-set with k disjoint cycles, at least one of whose lengths is greater than
m. If one cycle has length m + 1, the remaining n — (m + 1) elements
should compose k& — 1 disjoint cycles, but this is impossible, because n —
(m+1) =(n—-—m)—1< k-1 from the condition m > n — k. Hence,
mSi(n, k) = Si1(n, k) if m >n—k. O

There is no permutation of an n-set with & disjoint cycles of length at
most m, if n < k and n > km. The identity permutation is the only permu-
tation of an n-set having n disjoint cycles of length 1. Hence, ™C(n,k) =0
if n < korn > km, and ™C(n,n) = 1 for any positive integer m. By
Definition 2.2, we can obtain the following.

Lemma 2.4. For any nonnegative integers n and k, and any positive in-
teger m,
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(1) ™Si1(n,k) =04 n<k orn>km;
(2) ™S1(n,n) =1.

Lemma 2.4 shows that for any fixed integer m, the matrix consisting of
™Si1(n, k) as the (n+ 1,k + 1)-th entry is a lower triangular matrix whose
main diagonal entries are all 1’s. This matrix is invertible. Using its inverse
matrix, we define the multi-restrained Stirling numbers of the second kind.

Definition 2.5. Given any positive integer m, let ™S; be the matrix con-
sisting of ™S} (n, k) as the (n+1, k+1)-th entry for any nonnegative integers
n and k, and let ™S, be the inverse of ™Sy, i.e. ™Sy = (™S;)~!. Then,
the (n, k)-th m-restrained Stirling number of the second kind, denoted by
™Sa(n, k), is defined to be the (n + 1,k + 1)-th entry of ™S,. That is,

(2.5) ["S2(n B)ln k20 = ["S1(n, K)]7 kzo

The following table shows the 3-restrained Stirling numbers of the second
kind for n,k=0,1,...7.

38, (n,k) [ k=0 1 2 3 4 5 6 7

n=0] 1 0 0 0 0 0 0 0

1| 0 1 0 0 0 0 0 0

2| o 1 1 0 0 0 0 0

(2.6) 3 0 1 3 1 0 0 0 0
4l 0 -5 7 6 1 0 00

50 0 -65 -15 25 10 1 0 0

6| 0 -455 —455 0 65 15 1 0

7| 0 —1205 —4725 —1715 140 140 21 1

Since ™S is a lower triangular matrix whose main diagonal entries are all
1’s, so is its inverse matrix ™S,.
Lemma 2.6. For any nonnegative integers n and k, and any positive in-
teger m,

(1) ™Sa(n,n) =1;

(2) ™Sa(n, k) = 0 if just one of n or k is zero;

(3) ™Sa(n,k) =0 ifn<k.

Furthermore, the lower triangularity of the matrix ™S; provides the
identity between the multi-restrained Stirling numbers of the second kind
and the Stirling numbers of the second kind for some n, k, and m, as the
identity between the multi-restrained Stirling numbers of the first and the
Stirling numbers of the first kind in Lemma 2.3.

Lemma 2.7. For any positive integer m, and any nonnegative integers n
and k,

(1) ™Sy(n, k) = Sa(n,k) if m >n orm >n—k;

(2) hmm_ﬂo mSg(’n, k) = Sz(n, k)
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3. ExpLICIT FORMULAE

The explicit formula for the signless multi-restrained numbers of the first
kind can be easily derived from the explicit formula for the signless Stirling
numbers of the first kind,

n!
(3.1) Cln,k) = > g e (e (o) (k)

k1 +2k2+ -+ nkn=n
ki1 +k2o+- - +kn=k
Since k; is just the number of the cycles of length ¢ in each permutation,
we let k; = 0 if ¢ > m in order to count the number of permutations of an
n-set with k disjoint cycles of length < m.

Theorem 3.1. For any positive integer m and nonnegative integers n and
k, the (n,k)-th m-restrained Stirling numbers of the first kind is
(3.2)

mC(n, k) =

n!
Z k19k2 . .. mkm | ... 1’
ky 4 2kg 4 oo b = 7 1r12r2 m (kl)(kz) (km)
ki+kz+- - +km=k

Proof. For any positive integer p, let 1%:|2%2| ... |p*» be the partition of an
n-set with k; i-subsets where ¢ = 1,2, --- ,p. Since the number of cycles of
length i in an i-subset is (i — 1)!, there are ((s — 1)!)* products of the k;
disjoint cycles of length ¢, where each cycle is from one of the k; i-subsets.
Hence, the number of products of the cycles, each from one of the partition
subsets in the form of 1%1|2%2|...|pk» is (0!)F1(1!)k2... ((p — 1)!)*». Since
the number of partitions of an n-set into the subsets formed of 1%|2%z2|. |p*»
is
n!
@) e () (hal) -~ ()

[2], the number of permutations of an n-set with k; disjoint cycles of length
i wherei = 1,2,--- ,p is the product of (0!)*:(11)*2 ... ((p—1)!)*» and (3.3),

i.e.

(3.3)

n!
1k12k2 .. .mkm (kq 1) (ko!) - - - (kp!)

(3.4)
To count the number of all the permutations of an n-set with k& disjoint
cycles of length < m, we have to add (3.4) satisfying k; +2ko+- - -+mk, =n
and k1 + ko + -+ k= k. O

By Definition 2.2, the explicit formula for the multi-restrained Stirling
numbers of the first kind is as follows.
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Corollary 3.2. For any positive integer m and nonnegative integers n and
k, the (n, k)-th m-restrained Stirling number of the first kind is
(3.5)

R 1F12F2 - mFm (ki) (ko)) - - (k)

ki +2kg+---+mkm =n
kitke+: - +km=Fk

4. RECURRENCE RELATIONS

Consider 1 as an element of an n-set. Then, 1 is contained in exactly
one of the cycles in each permutation of an n-set. The number of cycles of
an n-set of length ¢ containing the element 1 is

(4.1) (?:;)~(z'-1)!=(n~1)(n—2)---(n—i+1),

because (’:__11) counts the choices of i — 1 elements from the n — 1 elements,
and (i — 1)! counts the number of cycles of length ¢ using 7 — 1 chosen
elements together with 1. Now, there are n — ¢ elements remaining to form
the remaining cycles that complete a permutation of the n-set. Since we
consider permutations of an n-set with k cycles of length < m only, we have
to make k — 1 additional cycles of length < m with the remaining n — ¢
elements. By adding all the cases where the element 1 belongs to a cycle of
length 1 through m, we count the number of all permutations of an n-set %
with & cycles of length < m. Hence,
m
42) ™C(nk)=) (n—1)(n=-2)--(n—i+1)-"C(n—ik—1)
=1
We can also prove this recurrence relation for the signless multi-restrained
Sitrling numbers of the first kind using the explicit formula (3.2).

Theorem 4.1. For any positive integer m and nonnegative integers n and
k,
(4.3) mC(n,k) =Y [n—1i1"C(n—i,k—1)
=1

Proof. ™C(n, k) is the sum of

nl
1k12k2 . ombm (kg ) (ko!) - -+ (km!)
where Y " ik; = n and )" k; = k. Considering n! = n-(n—1)! =
S ik; - (n— 1), (4.4) is the same as

i n—1)(n-2)---(n—i+1)(n—1)!
— 1k1 ... ghicaghki—Ljkigr .. .mkm(kll) o (ki)W (ks — D)) (kig1) - - - (kml)

(4.4)
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Let p; = k; if j # i and p; = k; — 1if j = i. Then, 377", jp; = 1", iki —
i=n—1and Z;.'_l:lpj =3 ki—1=k—1. Hence, "C(n, k) is the sum
of

N (n=1)(n—-2)-(n—i+1) (n—7i)!

1P12P2 .. . Pm (pl')(pZ') e (pm')

(4.5)

i=1
where 37 | jpj = n —iand 337", pj = k— 1. Since [n — 1];_1 = (n —
1)(n—2)---(n—4i+1) and

. n—1)!
mC(n—i,k—1) = E (
’ P19P2 ... mPm (pq! ... 1)’
P1+2p2+ -+ mpm=n-—1i 172 2p2 me (p1-)(p2-) (Pm-)
pr+p2+ - +pm=k—-1

(4.3) is obtained. O

Definition 2.2 and Theorem 4.1 provide the recurrence relation for the
multi-restrained Stirling numbers of the first kind as follows.

Corollary 4.2. For any positive integer m and nonnegative integers n and
k,

m .
(4.6) mSi(n, k) = (=1 n =11 ™S (n — i,k — 1)

i=1

Proof. By Definition 2.2, C(n, k) = (=1)¥~".™S;(n, k) and "C(n—i,k—
1) = (=1)k—nti-1.mG (n — i,k — 1). Since (—1)2*=") = 1, (4.3) yields
(4.6). O

Let S,, and S,,—1 be the set of permutations of an n-set, @ = {1, 2,3,--- ,n—
1,n}, and its subset, n — 1 = {1,2,3,--- ,n — 1}, respectively. Then, each
permutation in S, can be expressed as a product of a permutation ¢ in S,,—;
and either the 1-cycle (n) or the transposition (n a) for some a € n — 1,
i.e. for any 7 in S,, ™ can be expressed as case (1) (n)o or case (2) (n a)o.

To count the number of permutations of an n-set with & disjoint cycles,
we need to add the case (1) and the case (2). In the case (1), the 0 € S,,—1
should have k — 1 disjoint cycles, because the l-cycle (n) is disjoint with
every cycle in o. In the case (2), the o € S,,—1 should have k disjoint cycles,
because the transposition (n a) is not disjoint with one of the cycles in o.

Since the length of each cycle cannot be greater than m, case (2) should
be examined more closely. Without loss of generality, let (a; a2 -+ a; a)
be a cycle in . Then, (n a)(a; a2 -+ a; a) = (a1 a2 -+ a; a n) so
the length of the product cycle is one more than the length of the cycle
before multiplying (n a) in 0. Hence, if the cycle containing the element
ain o € S,_1 has length m, 7 = (n a)o has length m + 1, that we have
to disregard. Let’s call it case (3): m € S, is expressed as a product of
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(n a), (a1 a2 -+ am—1 a), and any permutation of the (n — 1 — m)-set,
n—1-{a,as, * ,am_1,a}, with k — 1 cycles of length < m.

The case (1) provides ™C(n — 1,k — 1) and the case (2) provides (n —
1) -™C(n — 1,k), because there are n — 1 choices for the element a. The
case (3) provides (n —1)(n—2)---(n—m)-"™C(n—1—m,k — 1), because
there are n — 1 choices for the element a and there are (n — 2)--- (n —m)
choices for the cycle (a; as -+ am-1). By adding the case (1) and the
case (2), and subtracting the case (3), we can have another recurrence
relation for the signless multi-restrained Stirling numbers of the first kind
as in Theorem 4.3. We can also prove this recurrence relation explicitly
using the recurrence relation in Theorem 4.1.

Theorem 4.3. For any positive integer m and nonnegative integers n and
k,
"C(n,k)= ™Cn—-1,k-1)+(n-1)-"C(n—1,k)
—(n=-1)(n-2)---(n—m)-"Cn—m—-1,k—1)
Proof. By adding and subtracting (n —1)(n —2)--- (n —m) - "C(n —m —
1,k —1) to (4.3), we have
"C(n,k) ="C(n—1,k—1)
+{(n—=1)-"C(n—-2,k—-1)
+ e
+(n=-1)(n-2)---(n—-m+1)-"C(n—m,k —1)
+(n—1)n-=2)---(n—-m+1)(n—m) - "Cn—m—1,k-1)}
—(n=-1)(n-2)---(n—m+1)(n—m)-"Cn—m—1,k—1)
Factoring (n — 1) out, the middle part {:--} becomes

(n—1)-Y [n—1—d_y-"C(n—1-1i,k—1),

=1

which is (n — 1) - ™C(n — 1,k) by (4.3) d

Definition 2.2 and Theorem 4.3 provide another recurrence relation for
the multi-restrained Stirling numbers of the first kind as follows.

Corollary 4.4. For any positive integer m and nonnegative integers n and
k,

"S1(n,k)= "Si(n—-1,k=1)—(n—1)-"S1(n—1,k)
—(-D)"n-1)(n-2)---(n—m) -"Si(n—m—1,k—1).

To obtain a recurrence relation for the multi-restrained Stirling numbers
of the second kind, we recall [3, Corollary 4.2] as follows.
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Proposition 4.5. [3, Corollary 4.2] Let [a(n,k)]n k>0 be an infinite in-
vertible matriz with a(0,0) = %1, and with only finitely many non-zero
elements in each row. Set a(n,k) = 0 if just one of n and k is negative.
Suppose that a(n, k) satisfies the graded recurrence relation

r—1
(4.7) a(n+1,k+1) =Y fi(n)a(n —i,k)
1=0

for all integers n, k with n > 0. Then there is a unique extension of a(n, k)
to all integers n, k such that the relation (4.7) is always satisfied and

(4.8) a(~n, —k) = (=1)"**b(k, n)
for all non-negative integers n, k, where [b(n, k)|n ken is the matriz inverse
to [a(n,k)]n ken. Finally, we have
r—1
(4.9) bn—1,k—1)=Y_ fi(k+i—1)b(n,k +1)
=0
for all natural numbers n and k.

Since ™S;(n, k) satisfies every condition for a(n, k) in Proposition 4.5
and the matrices [™S1(n, k)] and [™Sa(n, k)] are inverse to each other, we
can provide a recurrence relation for the multi-restrained Stirling numbers
of the second kind.

Corollary 4.6. For any positive integer m and for any integers n and k,
(4.10)

™Sy (n, k) = ™Sa(n — 1,k — 1) — 2(4)1‘(@ oo (k+i—1)-™Sy(n, k+1)

1=

-

Proof. The recurrence relation (4.6) can be rewritten as

mSi(n+1,k+1)= i(~1)i+1(n)(n -1 (n+2-4)-"S1(n+1-14,k)

i=1
m—1 )
= (i) =1) - (n+1=1)-"Si(n~i,k).
i=0
Hence, we can apply (4.9) of Proposition 4.5 to have

m—1
(4.11) ™Sy(n—1,k=1) = Y (=1)*(k+i—1)(k+i—2)--- (k)-™S(n, k+),
1=0
which can be solved for ™S;(n, k) as (4.10). d
Proposition 4.5 also provides an extension of the multi-restrained Stirling
numbers of the first kind, ™S;(n, k), and the second kind, ™Ss(n, k), for
all integers n and k.
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Corollary 4.7. For any positive integer m and all integers n and k,

(1) ™Si(n, k) = (=1)"7* - ™8y(~k, —n)
(2) ™Sa(n, k) = (=1)"7* - ™Sy (~k, —n)

Proof. Applying (4.8), we have
™81 (—n,—k) = (=1)"F . ™S, (k,n)

for any nonnegative integers n and k. We adjust n and k to provide (1),
and we solve (1) for ™S5(n, k) to have (2), for all integers n and k. O

Since both the ™Si(n,k) and ™Ss(n,k) for all integers n and k are
built to satisfy the recurrence relation, the properties stated in Lemma 2.3,
Lemma 2.4, Lemma 2.6, and Lemma 2.7 can be extended for all integers n
and k. The general schemes for the m-restrained Stirling numbers of the
first kind and the second kind can be shown in the following box. S; and
™S, represents the Stirling numbers and the m-restrained Stirling numbers
of the i-th kind, respectively, for ¢ =1 and 2. The blank cells represents 0.
Note that m diagonal entries of the m-restrained Stirling numbers are the
same as the Stirling numbers.

1
S; 1
S; 1
S; S; 1
mSi .. .
mS ™S, S, S 1
mS; ™S, ™S, S S; 1
1
1
S; 1
Sz' : Sz
™S8 Si
mS; mSi S; S,' 1

m-restrained Stirling numbers

Applying Corollary 4.7 to Corollary 4.4, another recurrence relation for the
multi-restrained Stirling numbers of the second kind can be obtained as
follows.

123

' DIMarquIs &




J 113107 001-448 int NB_Ok-Proofs_PG 124_20%3-16_1 6:49:56_K

Corollary 4.8. For any positive integer m and all integers n and k,
MmSa(n, k) = MSa(n—1,k—1)+k-"Sy(n—1,k)
+(-1)"k(k+1)---(k+m—1)-"Sa(n,k+m)
Proof. Applying ™S;(n,k) = (—1)""% .™Sy(~k, —n) to the recurrence re-
lation in Corollary 4.4, and multiplying both sides by (—1)""*, we have
MSo(~k,—n) = ™Sy(l—-k,1-n)+(n—1)-"S(-k,1—n)
—(n=-1(n-2)---(n—=m) -"Sy (1 —k,1+m—n).
Replacing k£ and n with 1 —n and 1 — k respectively, we have
MmSo(n—1,k—1)= ™Sy(n,k) —k-"Sz(n—1,k)
—(=k)(=k=1)---(=k—=m+1)-™S3(n,k +m).
Since (—k)(—k—1)---(=k—-m+1) = (-1)"k(k +1)--- (k+m — 1), we
just need to solve for ™Sy (n, k). O

5. GENERATING FUNCTIONS

The chain rule for the higher order differentiation of composite functions
by Faéd di Bruno [1] can be modified for a special function as follows.

Proposition 5.1. For any function g(t) and for any indeterminate z, let
f(t) = (g(t))*. Then, for any positive integer n, the n-th derivative of f(t)
with respect to t is

(5.1)

n . n! Ly O N
) E Z . klgkzg...kngg(g i!()) (9(t)* " [z]x.

k=1 ki +2ko +---+nkn =
ki+k24+---+kn=k

Using this modified Fad di Bruno formula (5.1), we can find a generating
function for the signless multi-restrained Stirling numbers of the first kind.

Theorem 5.2. For any positive integer m, let g(t) = 1+t+§+§+- . ~+%,
and for any indeterminate z, let f(t) = (g9(¢t))*. Then, for any positive
integer n, the n-th derivative of f(t) with respect tot att =0 is
n

(52) FO0) =3 ™ Cln, k) el

k=1
Proof. Since g\9)(t) = 0 for j > m, the coefficient for [z]; of £ (¢) in (5.1)
is

(53) > e ,H<

ky +2kg + -+ mkpm =n
ki+ k24 4 km=k

g(’)

) (9(2))*,
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for each k = 1,2,--- ,n. Since g(0) = 1 and ¢g®(0) = (i — 1)! for each
i=1,2,--- ,m, we have

(g0 1
I1(* '()> O™ = g

=1

Hence, the coefficient of [z];, in f(™)(0) for each k =1,2,--- ,m is

> "

kilkol o k1. 1k19k2 ... mkm
k1 +2k2 + -+ mkpym =n 1-h2 m ’
By + k24 Ak =k

which is the same as ™C(n, k) in (3.2). a

Since ™S;(n,k) = (=1)""* . ™C(n, k), we can also have a generating
function for the multi-restrained Stirling numbers of the first kind.

Corollary 5.3. For any positive integer m and for any indeterminate z,
let gt) =1+t -5 + £ 4+ + (=1)™ 12 and let f(t) = (g(£))®. Then,
for any positive integer n, the n-th derivative of f(t) with respect to t at
t=0 s
(5-4) f0) =Y 81 (n, kel

k=1
Proof. Since g(0) = 1 and g(¥(0) = (=1)*"1(s — 1)!, the coefficient of [z]
in f(™(t), (5.3), is

nl m -1 i—1\ ki
(55) > e H(5)

ky + 2kg + - + mkm =n i=1
ki+k2+  +km=k

Since

H( )1 1 ‘ 1)(k1+2k2+~--+mkm)—(k1+k2+--~+km) — (_1)(n—k)’
5.5) becomes (—1)""* .™C(n, k) as desired. O
(

The property, limy, oo ™S1(n,k) = Si(n, k) for any integers n and k,
suggests a new generating function for the Stirling numbers of the first kind
as

. £2 £3 m—-ltm ¢ z
lim (1+t——+—=+---+(-1) — = (1+log(1+1))".
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Theorem 5.4. For any indeterminate x, let f(t) = (1+ log(1+1t))*.
Then, for any positive integer n, the n-th derivative of f(t) with respect

tot att =0 is
(5.6) F™(0) Z Si(n, k)[z]x.
Proof. Using the binomial series identity, we have
— T __ = T k
£(8) = 1 +log(1 + ) = kZ () ot +0)

Z log(l + t)] (elk.

By Theorem 8.3 in p 282 of [2], we can replace Ilﬁg—(—ﬂ—w with Z:__k S1 (p, k);—;;:

i (Z Sl(pa k) ) [IL‘]k,

k=0

which is the same as

=3 (Z Si(n k)[w]k> 5
n=0 \k=1

because S1(n,0) = 0 for n # 0. O

This generating function for the Stirling numbers of the first kind pro-
vides a new generating function for the signless Stirling number of the first
kind as well.

Corollary 5.5. For any indeterminate z, let f(t) = (1 —log(l—t))*.
Then, for any positive n, the n-th derivative of f(t) with respect to t at
t=01s

n

(5.7) F(0) =Y C(n, k)[zl.

k=1

Proof. Since C(n,0) = 0 for n # 0 and C(n, k) = (—=1)""*S;(n, k), we have

> (2 C(n, k)[w]k> C=y (

k=1

n

(=1)"* 84 (n, k)[m]k> %

12 15

(—1)"-ksl(n,k)g> []&.
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Since (—1)"~*S;(n, k)t™ = (=1)*S1(n, k)(—t)",

Z(_l)n—ksl(n’ k)g = (_l)k (i Si(n, kﬂ%)
n=0 —
—log(1 — )]k loa(1 - IF
- (o (om0 e [lostl o)

by Corollary 8.1 in p 283 [2]. Hence,

%) n n o o ok
> (Z o, k)[w]k> ooy el —OF,
n=0 \k=1 k=0
= Z (Z) [—log(1—1)]* = (1 —log(1 —1))*.
k=0
O
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