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Abstract

Packing and covering are dual problems in graph theory. A graph
G is called H-—equipackable if every maximal H-—packing in G is
also a maximum H-—packing in G. Dually, a graph G is called
H —equicoverable if every minimal H—covering in G is also a mini-
mum H—covering in G. In 2012, Zhang characterized two kinds of
equipackable paths and cycles: Pr—equipackable paths and cycles,
M}y, —equipackable paths and cycles. In this paper, Px—equicoverable
(k > 3) paths and cycles, My —equicoverable (k > 2)paths and cycles
are characterized.
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1 Introduction

Packing and covering are dual problems in graph theory. The problem
that we study stems from research of H-decomposable graphs and equipack-
able graphs. The path and cycle on n vertices are denoted by P, and C,,,
respectively. In this paper, Denote the edges of P, by e1,ea,--+ ,e,_1. De-
note the edges of C,, by ey, eq, -+ ,e,. A vertex with degree 1 of a path
is called an end vertex of the path. A matching in the graph G is a set of
independent edges in G. A matching with k(k > 1) edges is denoted by
M. Let H be a subgraph of G. By G — H, we denote the graph left after
we delete from G the edges of H and any resulting isolated vertices.

A collection of edge disjoint copies of H, say Hy, Hs, - - , H;, where each
H;(1 =1,2,---,1) is asubgraph of G, is called an H—packing in G. A graph
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G is called H—decomposable if there exists an H —packing of G which uses
all edges in G. An H—packing in G with [ copies Hy, Hy, -+ ,H; of H is
called maximal if G — Ui:l E(H;) contains no subgraph isomorphic to H.
An H-packing in G with [ copies Hy, Ha,- -, H; of H is called maximum
if no more than [ edge disjoint copies of H can be packed into G. A graph
G is called randomly H—decomposable if every maximal H—packing in G
uses all edges in G. A graph G is called H—equipackable if every maximal
H—packing in G is also a maximum H-—packing in G. There have been
many results on randomly H —decomposable and H —equipackable graphs:
L. W. Beineke, P. Hamberger and W. D. Goddard ([1]) characterized all ran-
domly M} —decomposable graphs, all randomly K,,—decomposable graphs
and all randomly P,—decomposable for & = 4,5,6; B. Randerath and P.
D. Vestergaard ([2]) characterized all P3—equipackable graphs; Zhang and
Fan([3]) characterized all Mj;—equipackable graphs; Zhang([6]) character-
ized two kinds of equipackable paths and cycles.

An H-covering of G is a set L = {Hy, H,,--- , H;} of subgraphs of G,
where each subgraph H; is isomorphic to H and every edge of G appears
in at least one member of L. If G has an H-covering, G is called H-
coverable. An H-covering of G with [ copies Hy, H,--- , H; of H is called
minimal if, for any Hj, Uf::1 H; — H; is not an H—covering of G. An H-
covering of G with [ copies Hy, Ha,--- , H; of H is called minimum if there
exists no H-covering with less than [ copies H. Let ¢(G; H) denote the
number of H in the minimum H-covering of G. In 2008, Zhang([4]) gave
the dual definition of H-equipackable: H-equicoverable. A graph is called
H-equicoverable if every minimal H-covering in G is also a minimum H-
covering in G. And Zhang characterized all Ps-equicoverable graphs. The
path P, is Ps-equicoverable if and only if n = 3,4,5,6,8. The cycle C,, is
Ps-equicoverable if and only if n = 3,4, 5,7. Later, Zhang and Lan([5]) gave
some results on Ms-equicoverable graphs, and characterized some kinds of
special Ms-equicoverable graphs. The path P, is Mj-equicoverable if and
only if n = 5,6. The cycle C,, is Ms-equicoverable if and only if n = 4, 5.

In this paper, we investigate Py-equicoverable (k > 3) paths and cycles,
Mj.-equicoverable (k > 2) paths and cycles.

We first give one lemma which is crucial to our work:

Lemma 1. Let G be an F-coverable graph and H be an F-coverable sub-
graph of G which satisfy: (1) H is not F-equicoverable; (2) G — H is
F-decomposable. Then G is not F-equicoverable.

Proof. Since H is F-coverable but not F-equicoverable, by the definitions of
coverable and equicoverable, H has at least one minimal F-covering which
is not minimum. And G — H is F-decomposable, that is, G — H has an
F-covering which is also an F-packing. The union of the two F-covering
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mentioned above forms a minimal F-covering which is not minimum. So G
is not F-equicoverable. (]

2 Main results

2.1 Pi-equicoverable (k > 3) paths and cycles

Theorem 2. A path P, is Px-equicoverable if and only if k < n < 2k or
n=3k-—1.

Proof. In each Py-covering of P,, e; must be covered by H; = {ej, ez, -+,
ex—1} and e, 1 must be covered by Hy = {€,,_k41,€n—k+2," " ,€n—1}. For
the Py—covering of a path P,, we have seven cases.

1.n < k — 1. Since P, contains no copy of P, P, can’t be Pji-
equicoverable.

2. n = k. It’s easy to see the number of Py in the minimal Px-covering
of P, only can be 1. By the definition, P, is Py-equicoverable.

3. k+1 <n < 2k—1. It’seasy tosee ¢(Pp; Px) is 2. L = {H1, H2} covers
all edges of P,,. So the number of Py in the minimal Pi-covering of
P,, only can be 2. By the definition, P, is Pix-equicoverable.

4. n = 2k. It’s easy to see ¢(Py,; Py) is 3. Besides H; and Hj, only one
edge has not been covered, and we need only one copy of Py to cover
it. So the number of P, in the minimal Pg-covering of P, only can
be 3. By the definition, P, is Py-equicoverable.

5. 2k+1 < n < 3k—2. Obviously, ¢(P,; Px) is 3. There exists a minimal
Py-covering with 4 copies of P, denoted by L = {H;, Ho, H3, Hs},
where H3 = {627 €3, 7616}7 H4 = {ek+laek+2, o 762k—1}' By the
definition, P, is not Px-equicoverable.

6. n = 3k — 1. Besides H; and Hj, there must be one copy H; =
{€iseit1, - ,eirk—2} (2 <1 < k) to cover the edge ex. There also
must be one copy H]’? ={ej i1, ,€jph_apk+1<j<i+k-—1)
to cover ;1 —1. Since j <i+k—-1<2k—-1<j+k—2, H} also
covers the edges ek, -+ ,ek-1. L = {Hl,Hg,Hi,HJ’f} contains all
possible minimal Pg-coverings of P,. So the number of Py in the
minimal Pg-covering of P, only can be 4. By the definition, P, is
Pr-equicoverable.

7.n>3k n—2k+1)=r(mod k- 1)(r=0,1,--- ,k—2),n— 2k +
l+r)=k-Dtte Z,t>1). n—(2k+1)>k—1.
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(a) 0<r <k—3. P, — Pogt14r has (k= 1)t(t € Z,t > 1) edges, so
P, — Pokt14r is Pi-decomposable. Since 2k +1 <2k +1+7r <
3k —2, from case 5, Pyj414, is not Py-equicoverable. By Lemma
1, P, is not Pg-equicoverable.

(b) r=k—2. P, = Pyp_o or P, — Pyp_o is Pr-decomposable. It’s
easy to see ¢(Pyk_2; Px) is 5. There exists a minimal Pg-covering
of Pyk_o with 6 copies of Py denoted by L = {Hy, Ha,--- , Hg},
where Hy = {eg,e3, -+ ,ex}, Hy = {exy1,exq0, -+ e2n—1}, Hs =
{€2k—17 €2k, " ,631:—3}, Hg = {63k—2, €3k—1," " ,€4k—4}, 50 Pyr_o
is not Py-equicoverable. By Lemma 1, P, is not Px-equicoverable.

From the above, a path P, is Px-equicoverable if and only if £ < n < 2k
orn =3k —1. O

Theorem 3. A cycle C,, is Py—equicoverable if and only if k < n <
[%] orn=2k-—1.

Proof. By the symmetry of the cycle, we can choose the first copy of Px to
be H, = {e1,ea, -+ ,ex—1} in this proof. For the P;—covering of a cycle
C,., we have seven cases.

1.n < k—1. Since C, contains no copy of Py, C, can’t be Pj-
equicoverable.

2. n=k. It’s easy to see ¢(Cy; Py) is 2. Besides Hy, only one edge has
not been covered, and we need only one copy of Pk to cover it. So the
number of Py in the minimal Py-covering of C, only can be 2. By
the definition, C,, is Pi-equicoverable.

3. k+1<n< 2k—2. It’s easy to see ¢(Cp; Py) is 2.
In the covering, besides the copy H; , there must be another copy
H; = {e;, €541, ,eirk—2}(2 < i < k) to cover the edge ex, where
for Ve,,x +— z mod n.

(a) i+k—2>n,1—1<k—1. Then {H;, H;} is the only possible
minimal Pg-covering of C,, with 2 copies.

(b) i+k—2 < n-—1, since the edge e;,x_1 has not been covered, there
must be the third copy H; ={ej, €41, ,eitp_2(k+1<j<
i+ k — 1) to cover it.

e Wheni+k-1<n<[3], (n+i-1)—-(G+k—2) =
n+i—j—k+1<n+Mn-k+1)—(k+1)—k+1=
2n—3k+1 < 2x3 —3k+1=1. Thatis,n+i—1 < j+k-2.
So{H;, H;} can cover all edges of C,,, H; is redundant. So
when n < [-312&], there exists no minimal Pj-covering with 3
copies, C,, is Px-equicoverable.
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e When n > f%], n+i-1)—(+k—-2)=n+i—j—
k+l=n+n—-k+1)—(k+1)—k+1=2n-3k+1>
2x38 —3k+1=1 Thatis,n+i—1>j+k—2. there
exists a minimal Pr—covering with 3 copies of Py denoted
by H = {Hj, HJ’»', H,}. so C,, isn’t Py-equicoverable.

4. n =2k —1. C, is Pr-equicoverable.

In the covering, besides the copy H,; , there must be another copy
H; = {ei,eir1,- ,eirk—21{2 < i < k) to cover the edge ex. Since
the edge e;,r—1 has not been covered, there must be the third copy
Hi ={ej, €11, ,ejpk-2}(k+1 < j < i+k—1) to cover it. where for
Ver, T <~z mod n. Since j <i+k—1<2k—-1<j+k—2, H; always
covers the edges e;1x—1,€i1k, * ,€2%-1. {Hl,Hi,H;f} contains all
possible minimal Pg-coverings of C,,. So the number of Py in the
minimal Py-covering of C,, only can be 3. By the definition, C,, is
Pi-equicoverable.

5. 2k < n < 3k—3. It’s easy to see ¢(Cy; Py ) is 3. There exists a minimal
Pr-covering with 4 copies of Py denoted by L = {H;, Ha, H3, H4},
where H2 = {627635”' 7ek}7 H3 = {€k+1,ek+2,"' )62k?—1}7 H4 =
{€en—k+2,€n—k+3, - ,en}. So C, is not Py-equicoverable.

6. n =3k —2. It’s easy to see ¢(Cy; Px) is 4. There exists a minimal P-
covering with 5 copies of Py denoted by H = {H;, Ho, Hs, H4, Hs },
where

Hy ={es,eq, - ,ex,ery1}, H3 = {€rt1,€kt2, -, €26—2, €26—1},
Hy = {eky3,€kpa, €2k, €2641}, Hs = {€2k41,€2k42, -, €36—2, €1}

By the definition, so C,, is not Py-equicoverable.
7. n>3k—-1,n—-2k=r(modk—-1) (r=0,1,--- , k—2).

(a) 0<r<k-3.
Cp—Popi14r has (k= 1)t(t € Z,t > 1) edges, so Cp, — Pogy 14+ 18
Py-decomposable. By Theorem 2, Pyy 41 is not Py-equicoverable.
By Lemma 1, C,, is not Py-equicoverable.

(b)y r=k-—2.

e When n = 4k — 3, it’s easy to see ¢(Cyx—3; P) is 5. There
exists a minimal Py-covering with 6 copies of P, denoted by
L = {Hl, Hg, H3, H4, H5, HG}, where H2 = {62, €3, ,ek},

Hs = {ery1, €xt2, - ,e2m—1}, Hy = {ear_1, €0k, - ,€30-3},
Hs = {esr_2,€e35—1, - ,eak—4a}, He = {€3x—1,
€3k, " ,€4k—3}, S0 Cyi_3 is not Pg-equicoverable.
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e When n # 4k — 3, C,, — Pyr_9 is Px-decomposable. By
Theorem 2, Pyi_o is not Pg-equipackable. By Lemma 1, C,,
is not Pg-equicoverable.

From the above, C,, is P,—equicoverable if and only if £k < n < [%-{ or
n=2k—1.
O

2.2 Mj-equicoverable (k > 2) paths and cycles

To get the results, we first give several lemmas.
Lemma 4. Let P, be an My-coverable path, then c(Ppn; M) = [271].
Proof. Since P, is Mg-coverable, by the definition of minimal covering, it
is easy to see c(P,; My) is at least [2z2]. To get the desired result, clearly
it suffices to find a minimal Mj-covering of P, with [2z1] copies.

Let E(P,) = AU B, where A = {e1,e3,€e5, - ,eap_1}, B = {ea, €4, €5,

- ,ezq}. Let L ={H;,Hy,--- ,H[ﬁ):_l*l} be a set of subgraphs of P,,, where

H is shown in Fig.1, and let t =n —1 mod k.

€1 €3 €5 -+ €2k—1  €2k41 €2k43 - €4k—1
~ o N — ~~ o
H1 H2
€2k(i—1)+1 €2k(i—1)+3 €2k(i—1)+5 *°° €2ki-1
H'l,
€2ki+1 €2ki+3 ' €2p—1 €2 €4 - €Q(k—(p—ki))
Hiyq
€2(q+1—t) €2(q+1—t) "°° €29 €2 €4 " €2(k—t)
Hono1,
Fig.l L of P,

We claim that each subgraph H; is isomorphic to Mj. For example, L =
{H1, Hs, H3, Hy} is a collection of subgraphs of P;7, whose each subgraph
is isomorphic to My, which is illustrated in Fig.2.

e; ez €5 e7 €9 ey ez e15 €el7 ey eq eg

Hy Hy Hi
€8 €10 €12 €14 €16 €2 €4 €p

'

H4 H5
Fig.? L of P17
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Now we prove the above claim. Obviously H;(j # i+1, [27]) is isomor-
phic to M}, we only need to prove H;;; and H[%—W is isomorphic to My,
respectively. In H;y,, comparing the subscript of egr;y1 and egk—(p—ki)s

2Ui+1-2k—(p—ki))=2p—2k+1>2+1>2(p> k),

eaki+1 and eg(k_(p—ki)) are not adjacent, and H;; has k edges, thus H, 4, is
a copy of My. In Hr%_l], comparing the subscript of ey(g41-¢) and epr_y),

€g+1—t) =2k —t)=2(q—k)+2>2

(since P, is My-coverable, ¢ > k holds). That is, ey(q11-¢) and eg_¢) are
not adjacent, and H[2;_11 has k edges, thus H[‘_n_;l'! is also a copy of M.
From the above, we know that L is an My-covering of P, with [1;—1}
copies. More specifically, L is a minimal Mg-covering of P,. This completes
the proof. N

Lemma 5. In a path P,, if n—2k+1 > [21], then P, is not M-
equicoverable.

Proof. First we give a minimal Mj-covering of P,, say L = {H;,Ha, - -,
Hy 241}, where

(Hl = {61,637 e a€2k—3a62k—1}

Hy = {ez,eq, -+ ,e2k_2,€2k}

Hz = {ey,e3, - ,€ean_3,€;41}

Hy = {61763, s ,62k—3a32k+2}

Hy, g1 = {e1,e3,- - ,ezkfz,en—Q}
Hy_gky1 = {e1,e3,- ,€ak-3,€n_1}

By Lemma 4, we know ¢(Py,; My) is [222]. Since n — 2k +1 > [221], L
is a minimal Mj-covering of P, which is not minimum. Thus P, is not
Mj.-equicoverable. O

Lemma 6. Let C,, be an My-coverable cycle, then c(Cy; My) = [1].
We omit the proof, which is similar to the proof of Lemma 4.

Lemma 7. In a cycle Cy, if n—2k+2 > [Z], then C, is not M-
equicoverable.
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Proof. There is a minimal My-covering of C,,, say L = {H;, Ha,- -+, Hy_2k 42},
say

(Hy = {e1,e3, - ,ean—3, €251}

Hy = {e1,e3, - ,ear_3,€a}

H3 = {e1,e3, -~ ,ear—3,€2k41}

Hn_okt1 = {e1, €3, ,€2k-3,€n—1}
Hyoki2 = {e2, €4, - ,€2k-2,€n}
By Lemma 6, we know c(Cy;My) is [#]. Since n — 2k +2 > [Z], L

is a minimal Mp-covering of C,, which is not minimum. Thus C,, is not
Mj-equicoverable. O

Theorem 8. A path P, is My-equicoverable if and only if n = 2k + 1.
Proof. For the M, —covering of a path P,,, we have four cases.
1. n < 2k. Since P, is not Mj-coverable, P, is not My-equicoverable.

2. n =2k + 1. There must be one copy H; = {es,e4, - ,ear} to cover
e2. And there also must be another copy Ha = {ej,e3, -+ ,eax—1} to
cover egr—1. Then L = {Hy, Hy} covers all edges of the path P, so
L = {H,, Hy} is the unique minimal Mj-covering of P,,. The number
of My in the minimal Mj-covering of P, only can be 2, so P, is
Mj.-equicoverable.

3. When n = 2k 42, it’s easy to see ¢(P,; My) is 3. There exists a mini-
mal Mj-covering with 4 copies of M}, denoted by H = {Hy, Ho, H3, Hs},

where
H = {€2k+1,€2k—3,€2k—5,€2k—7,€2k—9, te ,61},
Hy = {eak, ear—2, €2k—5, €2k—7, €2k—9, " * , €1},
H; = {62k+1, €2k—1,€2k—-5,€2k—7,€2k—9, """ ,61},
Hy = {ear+1,€26—2,€2k—4,€2k—6, €268, " , €2}

By the definition, so P, is not Mj-equicoverable.

4. When n > 2k + 3, it’s easy to verify that n — 2k +1 > [ﬁg—l], by
Lemma 5, P, is not M-equicoverable, a contradiction.

From the above, a path P, is Mg-equicoverable if and only if n =
2k +1. O

Theorem 9. A cycle C,, is My-equicoverable if and only if n = 2k or
n=2%k+1.
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Proof. For the My —covering of a cycle C,,, we have four cases.

1. n < 2k—1. Since C,, is not My-coverable, C,, is not My-equicoverable.

2. n =2k. Hy = {eg,eq, -+ ,e2r} is the unique copy of M to cover

ea. Hy = {ej,e3, -, ear_1} is the unique copy of My to cover egy_1.
And L = {H,, H2} covers all edges of the cycle C,,, so L = {H;, Ha}
is the unique minimal Mj-covering of C,,. The number of M}, in the
minimal My-covering of C,, only can be 2, so C,, is Mj-equicoverable.

. n =2k + 1. We use induction on k to prove C,, is My-equicoverable.
For k£ = 2, it’s easy to verify that Cs is Ms-equicoverable. For k > 2,
we suppose that the claim is true for kK — 1. In the following, we prove
the claim is also true for k.

For any Mj-covering of Coxy1, say L = {Hy, Hq, -, H;}(l > 3),
where the elements of H; are labled in increasing order. Let H} denote
the set of the former k—1 elements of H;. Let L* = {H},H5,--- ,H['}.

(a) egk—1 is not covered by L*. Thus L* is an Mj_q-covering of
Psi_1 or Cop_o. Whatever Por_1 or Coi_o, there must be one
copy HY = {e1,e3, - ,eak_5, €2k—3} to cover egr_3. There must
be another copy H; = {e2,€4, - ,€2k—4a,€2k—2} to cover es.
H}UH} is the unique minimal M}y j-covering of Py 1 or Cog_s.
Since egi—1,e2k and egx41 have not been covered, Hy — Hy may
be egr_1 or egr,Hs — Hy may be egr or egry1. We have the
following possibilities.

o If H — Hf = {eak—1} and Hy — H5 = {eak}, eak+1 has not
been covered, there needs only one copy of M) denoted by
Hj to cover egpy1. So HiUH>UH3 is a minimal M-covering
of Cogy1. In the same way, if H; — Hf = {ezx-1} and
H2 — H; = {62k+1}, or if Hl — Hf = {egk} and HQ - H; =
{e2k+1}, H1 U Hy U H3 is a minimal Mj-covering of Coj 1.

o If H — Hf = Hy — H; = {ear}, eax—1 and ezr41 have not
been covered. Since egx_1 is not covered by H*, there must

be the unique copy Hs = {e;,e3, -+, eax_3, €2k—1} to cover
eak—1. Since HY C Hs, Hy — Hf C Hy, Hy U H3 covers
the edge ey, €5, -+ ,€a1_1, ea2x. There needs only one copy of

M. denoted by Hy to cover esgy1. Thus Ho U H3 U Hy is a
minimal Mpg-covering of Copy ;.

(b) eor_1 is covered by L*. Thus L* is an My _;-covering of Coj_1.
By the induction hypothesis, Cor_1 is Mj_1-equicoverable. So
the number of My _; in every minimal My _i-covering of Cor_1
is 3. We arbitrarily select a minimal M_;-covering of Coi_1

117



denoted by Hy, Hy, Hi from L*. Suppose ear_; € H3, then
Hs; — Hi = {eok+1}. Let E = (H; — Hf)U (Hy — H}), there are
two possibilities.

o If egr € F, eak,€2r—1, €ar+1 and all the former edges are all
covered by H; UHy U Hs, so L = {H;, Hy, H3} is a minimal
Mjp-covering of Copy1.

o If egr € E, since the copy of My covering e; doesn’t contain
€2k+1, €2k+1 can not belong to Hy, Hy, H3 at the same time.
Thus, we suppose ezr+1 ¢ Hi, and ey, ¢ Hq, s0 Hy — Hf =
{egk_l}, then H1 can only be {617 €3, ,egk_3,€2k_1}. So
H, — H} = {egg+1}. Otherwise,H, = H;. Hj may contain
€ak—1 OF egr—2. If H5 contains egr—1, then ezr_o is not cov-
ered by H} UHy U H3, which contracts to the fact that Hy U
H3 U Hj is an My_;-covering of Cox_y. Therefore H3 con-
tains egx_o. Hy can only be {ez,eq, - ,e26—2,€2k41}. H1 U
HQ covers the edges €1,€2,° " ,€2k_3,€2k—2,€2k—1,€2k+1-
There needs only one copy of My to cover esr denoted by
H,. Hy U Hs U Hy is a minimal My-covering of Cag1.

4. n > 2k + 2. It’s easy to verify that n — 2k +2 > [%], by Lemma 7,
C,, is not Mj-equicoverable.

From above, we can get the conclusion that the number of M} in every
minimal Mj-covering of Cax41 is 3. Thus C,, is M-equicoverable.
So a cycle C, is My-equicoverable if and only if n = 2k orn = 2k+1. O
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