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Abstract A strongly connected digraph Dis said to be maximally arc 
connected if its arc-connectivity >.(D) attains its minimum degree J(D). 
For any vertex x of D, the set {xglg E Aut(D)} is called an orbit of 
Aut(D). Liu and Meng [ Fengxia Liu, Jixiang Meng, Edge-Connectivity 
of regular graphs with two orbits, Discrete Math. 308 (2008) 3711-3717 ] 
proved that the edge-connectivity of a k-regular connected graph with two 
orbits and girth 5 attains its regular degree k. In the present paper, we 
prove the existence of k-regular m-arc-connected digraphs with two orbits 
for some given integer k and m. Furthermore, we prove that the k-regular 
connected digraphs with two orbits, satisfying girth k are maximally arc 
connected. Finally, we give an example to show that the girth bound k is 
best possible. 
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1 Terminology and introduction 

We consider finite digraphs without loops and parallel arcs. Let D = (V, E) 
be a strongly connected digraph, S, T s;;: V(D). Define (S, T) = { (x, y) E 
E(D) I x E S, y E T}. An arc cut of D is an arc set of the form (S, V\S), 
where 0 =f- S £;; V(D). The arc-connectivity >.(D) is the minimum size of 
all arc cuts in D. 

Let D = (V, E) be a strongly connected digraph. If ( u, v) is an arc of 
D, then we say u dominates v. The vertices which dominate a vertex v are 
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its in-neighbors, those which are dominated by the vertex v are its out-
neighbors. Let F s;; V be a nonempty set. We set w+(F) = (F, V\F), and 
w-(F) = (V\F,F). Usually, abbreviate w+({x}) and w-({x}) to w+(x) 
and w-(x), respectively. d+(x) = lw+(x)l and d-(x) = lw-(x)l are out-
degree and in-degree of x, respectively. A subset F of vertices is called an 
arc fragment, if lw+(F)I =>-.(D). An arc fragment of D with minimum 
cardinality is called a >-.-atom of D. The digraph Dis said to be a balanced 
digraph, if d+ ( u) = d- ( u) for every vertex u of D. It is not hard to see that 
in such a digraph, lw+(F)I = lw-(F)I for every F, where 0 -=f. F s;; V(D). 
Clearly, every regular digraph is balanced. For terminologies not given 
here, we refer [2] for reference. 

Let H be a strongly connected balanced digraph with vertex set 
{VI, Vz, · · · , vz}, d+(vi) = d+(vz) = · · · = d+(vm) = k- 1 and d+(vm+I) = 
d+(vm+z) = · · · = d+(vz) = k. The digraph Dz(H) is constructed by 
taking two copies of H, HI, Hz, and adding arcs {(vi,J,vi,3-J)Ivi,J E 
V(HJ), vi,3-J E V(H3-j), 1 i m,j = 1, 2} between HI and Hz. 
Clearly, Dz(H) is a k-regular m-arc-connected digraph. 

It is well known that when the underlying topology of an interconnection 
network is modeled by a (strongly) connected (di)graph D, the connectiv-
ity or edge( arc )-connectivity of D is an important measurement for fault 
tolerance of the network. In the design of network topology, ( di)graphs 
of high symmetry are often used because they usually have many desir-
able properties. For instance, vertex transitive ( di)graphs are maximally 
edge( arc) connected and edge transitive graphs are maximally (vertex) con-
nected [4, 6, 12, 14]. Let >-.(D) be the edge(arc)-connectivity of D, and J(D) 
be the minimum degree of D. So, a (di)graph Dis said to be maximally 
edge(arc) connected if >-.(D) = J(D). Let U be a subgroup of the sym-
metric group over a set S. We say that U acts transitively on a subset T 
of S if for any h, l E T, there exists a permutation rp E U with cp(h) = l. 
Denote by Aut(D) the automorphism group of D. A (di)graph is said to 
be vertex transitive, if for any two vertices u and v of D, there is an au-
tomorphism ¢ E Aut(D), such that ¢(u) = v. An undirected graph G is 
said to be edge transitive, if for any two edges e and f, there is an auto-
morphism¢ E Aut(G), such that ¢(e)= f. Similarly, a digraph Dis said 
to be arc transitive, if for any two arcs e' and f', there is an automor-
phism ¢ E Aut(D), such that ¢(e') = f'. Investigations on connectivity 
and edge( arc )-connectivity of transitive ( di )graphs were made by several 
authors, for example, by [5, 8, 9, 10, 11, 13, 15]. 

For any vertex x of D, the set {x9lg E Aut(D)} is called an orbit of 
Aut(D). Vertex transitive (di)graphs are (di)graphs with one orbit, and 
maximally edge(arc) connected [4]. It is natural to consider the relation 
between the edge(arc)-connectivity and the number of orbits. In paper 
[7] Liu and Meng proved that the edge-connectivity of a k-regular con-
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nected graph with two orbits and girth 5 attains its regular degree k. 
In the present paper, we prove the existence of k-regular m-arc-connected 
digraphs with two orbits for some given integer k and m, and give an anal-
ogously sufficient condition for digraphs with two orbits to be maximally 
arc connected. Finally, we give an example to show that our result is best 
possible. 

2 Main results 

Hamidoune [4] proved the following: 

Proposition 2.1. Any two distinct >.-atoms are vertex disjoint. 

Let D = (V, E) be a k-regular connected digraph with two orbits. In 
this paper, we use X1 and X2 to denote the two orbits of Aut(D). Let A 
be a >.-atom of D. Set A1 = AnX1 and A2 = AnX2. Then A= A1 UA2. 

Liu and Meng [7] proved the following in the case of undirected graphs. 
Actually, it is also true for directed graphs. 

Proposition 2.2. Let D = (V, E) be a connected digraph with two orbits. 
Let A = A1 U A2 be a >.-atom of D. Y = D[A] and Yi = D[Ai] for 
i = 1, 2. Then Aut(Y) acts transitively on both A1 and A 2, and Aut(Yi) 
acts transitively on Ai, fori = 1, 2. 

_Lemma 2.3. Let D be a k-regular connected digraph with two orbits (k 
2) and >.(D) < k. Use notation as the above. If A= A1 U A 2 be a >.-atom 
of D, then lA I 2 (i = 1, 2). 

Lemma 2.4. Let D be a k-regular connected digraph with two orbits (k 
2) and >.(D) < k. Then >.(D) =f. 1. 

By Lemma 2.4, we have every 2-regular connected digraph with two 
orbits is maximally arc connected. By Lemma 2.3, we have if Dis a 3)-
regular connected digraph with two orbits, >.(D) < k and A = A1 U A 2 is 
a >.-atom of D, then A17 A2 =f. 0. Combining this with Proposition 2.1, we 
have if D is not maximally arc connected, then all the >.-atoms of D are 
isomorphic, and both D[A1] and D[A2] are vertex transitive. 

Let D be a k-regular connected digraph with two orbits, and A = 
A1 U A2 be a >.-atom of D. By Proposition 2.2, we know that Aut(Y) 
acts transitively on Ai, then the vertices in Ai have the same outdegree 
and the same indegree in Y, and Aut(Yi) acts transitively on Ai, then 
D[Ai] is a regular digraph. Thus, we have non-negative integers k17 k2, ki, 

r 17 r2 such that for any x E Ai, the digraph D[Ai] is ri regular, and 
ki = l(x,A3_i)l, = I(A3-i,x)l, ri = l(x,Ai)l, IA3-il, ri < IAil, 
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l(x, V\A)I = k-ki-ri;;:: 0, I(V\A,x)l = 0, i = 1,2. Clearly, 
k1IA1I = = k2IA2I· 

For two vertex-disjoint digraphs D1 and D2, the join D = D1 V D2 is 
obtained from D 1 UD2 by joining every vertex of D1 to every vertex of D2, 
as well as joining every vertex of D2 to every vertex of D1. In other words, 
any two vertices v1 E V(D 1 ) and v2 E V(D2 ) are linked by an undirected 
edge. 

In paper [7], Liu and Meng proved the following: 

Proposition 2.5. (i)If k, m are even, 1 < m :::;; k, then there exists a 
k-regular m-edge-connected graph G with two orbits. 

{ii)lf k is odd, 1 < m :::;; k, then there exists a k-regular m-edge-
connected graph G with two orbits. 

This proposition is clearly true in the case of digraphs. In fact, for any 
regular degree k, we have the following result: 

Theorem 2.6. For any given positive integer m and k, satisfying 1 < m :::;; 
k, then there exits a k-regular m-arc-connected digraph D with two orbits. 

Proof. By Proposition 2.5, it suffices to consider the existence of k-regular 
m-arc-connected digraph D with two orbits, when m is odd and k is even. 
We construct D as follows: 

Since k is even and m is odd, we have m ;;:: 3, k - 2 is even and 
k - m is odd. Define Xk-2,k-m to be the undirected graph with vertex 
set V = {0,1,2, ... ,k- 3} and edge set E = {(i,j) E V x Vlj- i = 
p(mod(k- 2))and1:::;; p:::;; k-r;:-l orp = k22}. Clearly, Xk-2,k-m is a 
(k- m)-regular vertex transitive graph. Let Cm be the directed cycle of 
length m, and H' = Xk-2,k-m V Cm. Clearly, H' is a balanced digraph, 
and in H', the degree of vertex in V(Xk- 2,k-m) is k, the degree of vertex 
in Cm is k- 1. Let D = D 2 (H'). Then, it is clear that Dis a k-regular 
m-arc-connected digraph with two orbits. 0 

Before proceeding, we give the following Lemma: 

Lemma 2.7. Let D be a k-regular (k ;;:: 3) connected digraph with two 
orbits and >.(D) < k. Use notation as the above. If A = A1 U A2 be a 
>.-atom of D, then only the vertices in one orbit of A have out-neighbors 
(in-neighbors) in V\A. 

Proof. By contradiction. Since 0 < ).. = lw+(A)I = IA1I(k- k1- r1) + 
IA2I(k- k2- r2) < k. Suppose both the vertices in A1 and A2 dominate 
the vertices in V\A. Then we have IA1I + IA2I :::;; ).. < k. We consider two 
cases: 
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Case 1. If IA1I + IA2I = A < k, then k- k1- r1 = k- k2- r2 = 1, 
this implies that k1 + r1 = k2 + r2 = k - 1. Thus, k - 1 = k2 + r2 
IA1I + IA2I- 1 =A- 1 < k- 1, a contradiction. 

Case 2. If IA1I+IA2I <A< k, then ki+ri IA1I+IA21-1 A-2 k-3 
(i = 1, 2), that is k-ki-ri 3. Hence, k >A= IA1I(k-k1-r1)+IA2I(k-
k2- r2) 3(IAll + IA2I), this implies that IA1I + IA2I k3l, and thus 
ki+ri IA1I+IA21-1 k3 1-1 = k3 4 . Thenk-ki-ri k-k34 = 2kf4, 
and so (k- k2- r2)IA21 ekt4 )IA21· Without loss of generality, assume 
that IA1I IA2I· Then IA1I + IA2I) k6 1 and so 
k6 1IA2I· Since 2kf4 > k6 1, we have (k-k2 -r2)IA2I > = k1IA1I· 
Then lw+(A)I = IA1I(k- k1- rl) + IA2I(k- k2- r2) > IA1I(k- k1- rl) + 
IA1Ik1 = lw+(A1)1 contradicts the fact that A is a A-atom. Thus only the 
vertices in one orbit of A have out-neighbors in V\A. Analogously, we can 
prove that only the vertices in one orbit of A have in-neighbors in V\A. 
The proof is complete. 0 

A k-regular digraph D with girth g is called a ( k, g)-digraph, and n( k, g) 
is the minimum number of vertices a (k, g)-digraph can possess. Let D be 
the digraph with vertex set V = {0, 1, 2, · · · , k(g- 1)} and arc set E = 
{(i,j) E V x V IJ -i = m(mod(k(g-1) + 1)) and1 m k}. Clearly, Dis 
a vertex transitive (k,g)-digraph and, therefore, n(k,g) k(g -1) + 1 [1]. 
Hamidoune [3] proved that the girth of vertex transitive digraph of order n 
and regular degree k is less or equal to In/ k l , which implies n k (g -1) + 1. 
Thus, we have the following: 

Lemma 2.8. If Dis vertex transitive (k,g)-digraph, then IV(D)I n(k,g) 
=k(g-1)+1. 

Clearly, if the degree of every vertex of vertex transitive digraph D is 
at least k, and the girth of Dis at least g, then IV(D)I n(k,g). If D 
is a k-regular connected digraph with a directed cycle of length g0 and 
IV(D)I < n(k,go), then g(D) <go. 

Now we give our main result: 

Theorem 2.9. If D is a k-regular connected digraph with two orbits and 
girth g(D) k, then A(D) = k. 

Proof. By contradiction, suppose A(D) < k. Use notation as the above. 
By Lemma 2.7, without loss of generality, we assume that only the vertices 
in A1 have out-neighbors in V\A, then k = k2 + r2, k- k1 - r1 1 and 
A= IA1I(k- k1- rl) < k. Thus IA1I k. Since g(D) k, we have 
g(D[Ai]) k, this implies that IAil kif ri 1. Thus if IAI < k, we 
have ri = 0 (i = 1, 2). By Lemma 2.7, we consider two cases: 

Case 1. Only the vertices in A 1 have in-neighbors in V\A. Combining 
this with only the vertices in A 1 have out-neighbors in V\A, we have the 
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vertices in A2 are not adjacent to the vertices in V\A. Thus, we have 
ki = (i = 1, 2) and ktl At I = k2IA2I· Since A= IAtl(k- kt- rt) < k, we 
have IAtl < k, thus r1 = 0. So 0 <A= IAtl(k- kt) < k and k- kt 1. 

Subcasel.l. IAtl <A. Since A= IAtl(k- kt) and IAtl <>.,we have 
k- kt 2, so kt k- 2. Then k >A= IAtl(k- kt) 21Atl· This gives 
that IAtl k2l, thus k2 k;- 1. 

Subcase 1.1.1. k2 = 1. Since k2 + r2 = k, we have r 2 = k - 1, that 
is D[A2] is (k- 1)-regular and vertex transitive. By Lemma 2.8, we have 
IA2I = v(D[A2]) = ktiAtl < (k- 1) k2l < (k- 1)2 + 1 = n(k- 1, k). This 
implies that g(D[A2]) < k, so g(D) < k, contradicting g(D) k. 

Subcase 1.1.2. k2 2. Since k2 k;t, we have r2 = k- k2 -41· By 
Lemma2.8, we have IA2I = v(D[A2]) n(-4l,k) = kt1(k-1)+1 = k22H· 
On the other hand, since k2IA2I = kt!Atl, IAtl k2 1, k2 2 and kt < 

k-1, we have IA2I = -dr;(k-1) < < -4l·(k-1)+1 = k 2i 1 , 

that is IA2I < k 2i 1 , a contradiction. 
Subcasel.2. IAtl =A. Since A= IAtl(k- kt) and IAtl =A< k, we 

have kt = k- 1 and IAtl k- 1. 
Subcase 1.2.1. k2 = 1. Since k2 = 1 and k2 +r2 = k, we have r2 = k -1, 

this implies that D[A2] is (k - 1)-regular and vertex transitive. Thus, 
IA2I = v(D[A2]) = kt!Atl (k-1)2 < (k-1)2+1 = n(k-1,k). By Lemma 
2.8, we have g(D[A2]) < k, this implies that g(D) < k, contradicting 
g(D) k. 

Subcase 1.2.2. k2 2. Since k1 = k- 1 and IAtl k- 1, we have 
k2l A2l = ktiAtl (k -1)2, and thus IA2I k12 (k -1)2. Since k2 IAtl 
k- 1 and k2 + r2 = k, we have r2 1, this implies that IA2I k. Since 
k IA2I · (k- 1), that is k · (k- 1), we have k- 1 > k2 
and so k2 k- 2, combining this with k2 + r 2 = k, we have r 2 2. By 
Lemma 2.8, we have IA2I n(2, k) = 2(k -1) + 1. Since IA2I kt2 (k -1)2, 
we have 2(k- 1) + 1 · (k- 1). Thus > 2, that is k2 < k;t. 
Since k2 + r2 = k, we have r2 > -41· By Lemma 2.8, we have IA21 

n( rkttl' k) -41· (k- 1) + 1 > + 1. But since IA21 and 

k2 2, we have IA2I < + 1, a contradiction. 
Case 2. Only the vertices in A2 have in-neighbors in V\A. Combining 

this with only the vertices in At have out-neighbors in V\A, we have k2 + 
r2 = k, k! +rt = k, and thus 0 <A= IAtl(k- kt -rt) = IA2I(k- -r2) < 
k. Clearly, both D[A1] and D[A2] contain less than k vertices. Since 
g(D) k, we have r1 = r2 = 0, so k2 = k. But k2 IAtl < k, that is 
k2 < k, a contradiction. 

In all cases we obtain contradictions, thus >.(D) = k. D 

Now we give an example to show that the girth bound k is best possible. 
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Figure 1 

D is an independent set with k-1 vertices 

.....,. from A to B is an arc set with arcs from each vertex 

of A to each vertex of B 

Example 2.10. Let H be a strongly connected digraph with vertex set 
{v1,v2,··· ,vk-d and {vi,1,vi,2,··· ,vi,k-d (i = 1,2,··· ,k -1), arc 

set 
{(vj,jpVj+I,h)lvj,jpVJ+l,J2 E V(H)} (j1,]2 = 1,2, ... ,k -1;j 

1, 2, ... ) k- 2); 
{(vk-l,j1 , v1,jJ I Vk-1,)1, vl,h E V(H)} (JI,J2 = 1, 2, · · · , k -1); 
{(vj, Vj,j1 ) I Vj, Vj,)l E V(H)} (j,j1 = 1, 2, .. · , k- 1); 
{(vj,j1 , VJ+I) I Vj,j 1 , VJ+l E V(H)} (jl = 1, 2, · · · , k -1;j = 1, 2, · · · , k-

2); 
{(vk-1,)1, vi) I Vk-l,j1 , v1 E V(H)} (jl = 1, 2, · · · , k- 1). 
The digraph Dk_ 1(H) (see Figure. 1) is constructed by taking k- 1 

copies of H, H1, H2, · · · , Hk-1, and adding arcs 
{(v},v;+l)lvj E V(Hi),v;+l E V(Hi+l)} (i = 1,2, .. ·,k-2;j 

1 2 ... k- 1)· 
' ' ' ' {(v;-1,vJ) I v;-l E V(Hk_I),vj E v(HI)} (j = 1,2, .. ·, k -1). 

Clearly, Dk-l (H) is the digraph with two orbits and girth g = k - 1, 
but not maximally arc connected. 

9 



References 

[1] M.Behzad, G.Chartrand, and C.E.Wall, On minimal regular digraphs 
with given girth, Fund. Math 69 (1970) 227-231. 

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 
Macmillan, London (1976). 

[3] Y.O.Hamidoune, An application of connectivity theory in graphs to 
factorization of elements in groups, Eur J Combin2 (1981) 349-355. 

[4] Y.O.Hamidoune, Quelques problemes de connexite dans les graphes 
oriente, J.Comb.Theory Ser. B 30 (1981) 1-10. 

[5] A. Hellwig and L. Volkmann, Maximally edge-connected and vertex-
connected graphs and digraphs: A survey, Discrete Mathematics 308 
(2008) 3265-3296. 

[6] M.Mader, Minimale n-fach Kantenzusammenhagenden Graphen, 
Math.Ann. 191 (1971) 21-28. 

[7] Fengxia Liu and Jixiang Meng, Edge-Connectivity of regular graphs 
with two orbits, Discrete Math. 308 (2008) 3711-3717. 

[8] Jixiang Meng, Connectivity of vertex and edge transitive graphs, Dis-
crete Applied Mathematics. 127 (2003) 601-613. 

[9] J .X. Meng, Optimally super-edge-connected transitive graphs, Dis-
crete Math. 260 (2003) 239-248. 

[10] J.X. Meng and Y.H. Ji, On a kind of restricted edge connectivity of 
graphs, Discrete Applied Math. 117 (2002) 183-193. 

[11] Jixiang Meng and Zhao Zhang, Super-connected arc-transitive di-
graphs, Discrete Applied Mathematics. 157 (2009) 653-658. 

[12] R. Tindell, Connectivity of cayley graphs, in: D.Z. Du, D.F. Hsu 
(Eds.). Combinatorial Network Theory, Kletwey, Dordrech (1996) 41-
64. 

[13] Y.Q.Wang, Super restricted edge-connectivity of vertex-transitive 
graphs, Discrete Mathematics 289 (2004) 199-205. 

[14] M.E.Watkins, Connectivity of transitive graphs, J.Combin.Theory 8 
(1970) 23-29. 

[15] Zhao Zhang, Super-connected edge transitive graphs, Discrete Applied 
Math. 156 (2008) 1948-1953. 

10 


