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Abstract An !-coloring of a graph G is an edge-coloring of G 
such that each color appears at each vertex v E V (G) at most 
f(v) times. A multi-wheel graph is a graph obtained from s cy-
cles Cn,, Cn2 , ••• , Cn. ( s :2: 1) by adding a new vertex, say w, and 
edges joining w to all the vertices of the s cycles. In this article, we 
solve a conjecture posed by Yu et al. in 2006 and prove that it is not 
always true. Furthermore, the classification problem of multi-wheel 
graphs on !-colorings is solved completely. 
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1 Introduction 
Throughout this paper, the term graph is used to denote a finite undirected 
simple graph. The reader is referred to [1 J for the undefined terms. 

An edge-coloring of G is an assignment of colors to all the edges of G. Let 
G be a graph and let f be a function which assigns a positive integer f(v) to 
each vertex v E V(G). An !-coloring of G is an edge-coloring of G such that 
each vertex v E V (G) has at most f ( v) edges colored with the same color. The 
minimum number of colors needed to !-color G is called the !-chromatic index 
of G and denoted by xj(G). We denote the degree of vertex v by d(v). Define 

d(v) 
b..J(G) = max {I-!( )l}, 

vEV(G) V 

where l X l is the smallest integer not smaller than X. 

Hakimi and Kariv r2] firstly posed and studied !-colorings. One of their 
results will be used in tbe rest of this article as follows. 
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Theorem 1 {2} Let G be a graph. Then 

G is called a graph of !-class 1 if xj(G) = b.1(G), and of !-class 2 otherwise. 
The problem of deciding whether a graph G is off-class 1 or !-class 2 is called 
the classification problem on !-colorings. 

If f(v) = 1 for all v E V(G), the !-coloring is reduced to the proper edge-
coloring, and the !-chromatic index of G is reduced to the chromatic index of 
G and denoted by x'(G). The well-known theorem of Vizing [4], i.e. b.( G) ::::; 
x'(G) ::::; b.( G)+ 1, can be deduced from Theorem 1. 

Zhang and Liu [6]-[10], Zhang et al. [11, 12], Yu et al. [5] studied the 
classification problem ot complete graphs, regular graphs and some other special 
classes of graphs on !-colorings. Liu et al. [3] studied some properties of !-
critical graphs. (A graph G is called !-critical if G is of !-class 2 and xj(G-e) < 
xj(G) for every edge e E E(G).) 

Let 
V0*(G) = {v E V(G): d(v) = f(v)b.t(G)}. 

The f-core of a graph G is the subgraph of G induced by the vertices of V0*(G) 
and is denoted by G [). r The number d( v) / f ( v) is called the f -ratio of vertex v 
in G. We call a graph G RP-removable, if all the vertices of G can be iteratively 
removed using the following vertex removal operations: 

( 1) removal of a vertex v with degree at most (! ( v) - 1) b. 1 (G) + 1; 

(2) removal of a vertex v, which has at most one remaining neighbor of !-ratio 
b.t(G). 

Zhang et al. [11] got the following result. 

Theorem 2 {11} Let G be a graph. IJG is RP-removable, then G is of !-class 
1. 

Clearly, a graph without f-core is RP-removable. Furthermore, a graph 
whose f-core is a forest is also RP-removable because we can iteratively remove 
the remaining vertices of degree one in the f-core first. Hence, the following 
results can be deduced from Theorem 2. 

Corollary 3 {7) Let G be a graph. If V0*(G) = 0, then G is off-class 1. 

Corollary 4 (7) Let G be a graph. If Gf).1 is a forest, then G is of !-class 1. 

A cycle is a closed walk v1v2 ... v;;v1 in which v1, v2, ... , Vp are distinct. A 
cycle with p vertices is denoted by llp. By Corollary 4, it is easy to see that 
if G is of !-class 2, then G [). 1 must contain cycles. When G [). 1 contains cycles, 
the simplest non-trivial case is that G [). 1 consists of vertex-disjoint cycles and 
paths. In this paper, we will give a class of graphs off-class 2 whose f-core has 
maximum degree two. 
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A multi-wheel graph is a graph obtained from s cycles Cn,, Cn2 , ••• , Cn. ( s 2: 
1) by adding a new vertex, say w, and edges joining w to all the vertices of 
the s cycles. The new vertex is called the hub of the multi-wheel graph. Let 
n = Clearly, for a multi-wheel graph G with order n + 1, the hub w 
has d(w) each v E V(G)\ {w} has d(v) = 3. When s = 1, a multi-wheel 
graph with order n + 1 is just a wheel graph, which is denoted by Wn+l· Yu et 
al. obtained the following result and posed a conjecture on wheel graphs [5]. 

Theorem 5 [5} Let G be a wheel graph of order n + 1 with the hub w and the 
cycle en= VtV2 .. . VnVt. If d(w) :f. 3r + 2 (r E z+) when 6.t(G) = 3, then G 
is off -class 1. 

Conjecture 1 {5} Let G be a wheel graph of order n + 1 with the hub w and 
the cycle Cn = VtV2 ... VnVl. If d(w) = 3r + 2 (r E z+) when 6.t(G) = 3, then 
G is of !-class 2. 

However, the following counterexample in Fig. 1 implies that the conjecture 
is not true. 

Fig 1. An !-colorings of W12 with 6.t(W12 ) = 3 colors, where f(w) = 5 and 
f(v) = 1 for each v E V(W12) \ {w}. 

In Section 2, we solve Conjecture 1 and show that case f(w) = r + 1 and 
f ( v) = 1 for all v E V (G) \ { w} is the only one when conjecture works (see 
Theorem 7). Furthermore, we solve the classification problem of multi-wheel 
graphs on !-colorings completely. In Section 3, we give a problem for further 
research. 

2 Main Results 
Let Nc(v) = {u E V(G) : uv E E(G)}. Suppose that G has been given an 
edge-coloring c with colors in C. An edge colored with color a E C is called 
an a-edge. We denote by la(v)l the number of a-edges of G incident with the 
vertex v E V(G). Define m(v, a) = J(v)- la(v)l for each v E V(G) and each 
a E C. For two distinct colors a, b E C, a trail W = v0e 1 v1 e2 v2 ... eh vh is called 
an ab-alternating trail if W satisfies the following conditions: 

(a) the edges of W are colored alternately with a and b, and the first edge of 
W is colored with b; 
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(b) 2: 2 if va = vh and his odd; 
m v0 , a 2: 1, m(vh, b) 2: 1 if va I vh and his even; 
m va,a 2: 1, m(vh,a) 2: 1 if va I Vh and his odd. 

The operation, interchanging the colors a and b of the edges in an ab-alternating 
trail W, is called switching W. After W was switched, m(v;, a) and m(v;, b) 
remain as they were if i I 0, h, while m(vo, b) 2: 1 and m(vo, a) 2: 0 if W is 
not a closed trail, or m(v0 , b) 2: 2 and m(v0 , a) 2: 0 if W is a closed trail of odd 
length. 

Theorem 6 Let G be a multi-wheel graph of order n+ 1 with the hub w and the 
cycles en,, ... , en., and j(w) 2: (n + 1)/3. Then, when j(w) = (n + 1)/3 
and f(v) = 1 JOT all v E V(G) \ {w}, G is off-class 2; when f(w) > (n + 1)/3 
or f(u) 2: 2 for at least one vertex u E V(G) \ {w}, G is off-class 1. 

Proof. Since f ( w) 2: ( n + 1) /3, d( v) = 3 and f ( v) 2: 1 for each v E V (G)\ { w}, 
there is D.1 (G) ::::; 3. If D.1 (G) = 1, i.e. d(v) ::::; f(v) for all v E V(G), then 
xj(G) = 1. If D.J(G) = 2, then either V0*(G) = 0 or V0*(G) = {w}. In either 
case, G is of !-class 1 according to Corollary 3 and Corollary 4. Next, we discuss 
the cases with D. f (G) = 3. 

If f(w) = (n+1)/3 and f(v) = 1 for all v E V(G)\{w}, then :i:l = !(",) < 3 
and 7f;t = 3 for each v E V(G) \ {w}. So this is a case with D.J(G) = 3. In 
addition, V0* (G) = V (G)\ { w}. By contradiction, suppose that ( is an f -coloring 
of G with 3 colors. Then one color appears exactly f(w) -1 times and either of 
the other two appears f(w) times at vertex win(. So there will exist some color, 
say a, such that the number of all a-edges in(, i.e. (!( w) x 1 + 1 x (3f(w) -1))/2, 
is not an integer. This is a contradiction. So G is off-class 2 if f(w) = (n+1)/3 
and f ( v) = 1 for all v E V (G) \ { w}. 

If f(w) > (n + 1)/3, then :i:l = /(",) < 3. We consider two cases. 
Case 1. There exists a vertex v E V(G) \ { w} with f(v) = 1. 

Clearly, D.J(G) = 3. Since d(w) = n ::::; 3f(w)- 2 = 3(f(w)- 1) + 1, we can 
RP-remove w first. After that, the !-ratio of any remaining vertex is at most 
2. That is to say that G is RP-removable. By Theorem 2, G is of !-class 1. 

Case 2. Each vertex v E V(G) \ {w} has f(v) 2:2. 
D.J(G) = 3 only if l:i:ll = 3 in this case. This implies that V0*(G) = 0. By 
Corollary 3, G is of !-class 1. 

Now, the remaining case is that f(w) = (n + 1)/3 and there exists a vertex 
u E V(G) \ {w} such that f(u) 2: 2. We suppose that u E V(en.)(1::::; k::::; s). 
Let u' E V(enk) n Nc(u). Clearly, w, u V0*(G) by D.J(G) = 3. This implies 
that u' has at most one neighbor of !-ratio D.J(G) in G. Thus we can RP-remove 
u' first. Then RP-remove w because dc-u'(w) = 3f(w)- 2 = 3(f(w)- 1) + 1. 
Now, each remaining vertex has !-ratio at most 2. Therefore G is RP-removable. 
By Theorem 2, G is off-class 1. I 

Now we can solve Conjecture 1 by virtue of Theorem 6. 

Theorem 7 Let G be a wheel graph of order n + 1 with the hub w and the cycle 
en· Suppose that d(w) = 3r + 2 (r E z+) and D.1(G) = 3. G is of !-class 2 if 
and only if f ( w) = r + 1 and f ( v) = 1 for all v E V (G) \ { w}. 
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Proof. D.1(G) = 3 and 3 f d(w) implies that < 3. Thus f(w) 2: (d(w) + 
1)/3 = (n + 1)/3. By Theorem 6 for the case that s = 1, G is of !-class 2 
if and only if f(w) = (n + 1)/3 = (d(w) + 1)/3 = r + 1 and f(v) = 1 for all 
v E v (G) \ { w}. I 

In general, we have the following result to solve the classification problem of 
multi-wheel graphs on !-colorings. 

Theorem 8 Let G be a multi-wheel graph of order n + 1 with the hub w and the 
cycles Gnp Cn1.' ... , Cns. Then G is off-class 2 if and only if f(w) = (n + 1)/3 
and f ( v) = 1 ]Or all v E V (G) \ { w}. 

Proof. By Theorem 6, the sufficiency is verified. Next, we show the necessity 
that G is of !-class 1 when f(w) "I (n+ 1)/3 or f(u) 2:2 for at least one vertex 
u E V(G) \ {w}. 

When f(w) > (n + 1)/3, or f(w) = (n + 1)/3 and f(u) 2: 2 for at least one 
vertex u E V (G) \ { w}, G is of f -class 1 by Theorem 6. So the remaining cases 
to be considered are the ones with f(w) < (n + 1)/3, i.e. n 2: 3f(w). 

Case 1. n > 3f(w). 
Then = 1{;,) > 3. This means flt(G) 2: 4. Since d(v) = 3 for each 

v E V(G) \ {w}, V0*(G) = 0 or V0*(G) = {w}. By Corollary 3 or Corollary 4, G 
is of f -class 1. 

Case 2. n = 3f(w). 
Since = 3 and Jffi = /(v) :S 3, there is flt(G) = 3. We give an!-

coloring of G with 3 colors a 1, a 2, a 3 as follows. First, for each i = 1, 2, ... , s, 
we color the edges in cycle Cn, orderly starting from an arbitrary edge. If n; = 0 
(mod 3), color the edges with colors a 1,a2,a3 alternately. If n; = 1 (mod 3), 
color the first n; - 1 edges with colors a 1, a 2, a 3 alternately and the last edge 
with color a 2 . If n; = 2 (mod 3), color the first n; -2 edges with colors a1, a2, a3 
alternately, the (n; - 1)th edge with a 1 and the last edge with a 2. Second, for 
each v E V (G) \ { w}, we color the edge wv with the color which is one of 
{ a 1, a 2, a 3} and does not appear at v so far. Now, we obtain an edge-coloring ( 

which each of { a1, a2, a3} appears at each vertex v E V ( C!) \ { w} exactly one 
t1me. Let q = maxl<i<j$3{lla;(w)l -1 aj(w)ll}. If q = 0, 1.e. ja;(w)l = f(w) 
for each i = 1, 2, 3, then ( is an !-coloring of G with 3 colors. Otherwise, we 
claim that q 2: 4. Suppose that a and b are two colors in { a 1, a 2, a 3} satisfying 
that la(w)l-lb(w)l = q. Clearly, la(w)l 2: f(w) + 1 and lb(w)l :S f(w) -1 since 
d(w) = 3f(w). Thus q 2: 2. If q = 2, then the number of a-edges in (, i.e. 
((f(w) + 1) + 3f(w))/2, is not an integer. If q = 3, then the number of either 
a-edges orb-edges in(, i.e. one of {(la(w)l + 3f(w))/2, (lb(w)l + 3/(w))/2}, is 
not an integer. When q 2: 4, we can find a closed ba-alternating trail P with 
odd length starting at w. Switching P makes la(w)l decrease by two and lb(w)l 
increase by two. Thus la(w)l -1 b(w)l decreases by four. Repeat this operation 
until q = 0. Therefore, G is of !-class 1 in this case. I 
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3 Further research problem 
For a multi-wheel graph G of !-class 2, Ge:.1 is a union of disjoint cycles. We 
can show another example on a graph of !-class 2, which is not a multi-wheel 
graph and whose f-core is a cycle, as below. 

Example. Let H be the join graph of C14 and K 3 , where f(v) = 1 for each 
v E V(C14 ) and f(u) = 3 for each u E V(K3). Then His of !-class 2. 
Proof. Clearly, d(v) = 5 for each v E V(C14 ) and d(u) = 14 for each u E V(K3) 
in H. So D.t(H) = 5. 

By contradiction, suppose that H is of !-class 1. Then H has an !-coloring 
with 5 colors c1 , c2 , ... , c5 . For whatever distribution of 5 colors in f -colorings 
of H, each of 5 colors appears exactly 1 time at v when vertex v E V(C14 ) and 
some color appears 2 times and each of the others appears 3 times at u when 
vertex u E V(K3). Since there are 5 colors and IV(K3 )1 = 3, there must exist 
at least 2 colors, each of which appears 1 time at each v E V(C14 ) and 3 times 
at each u E V(K3 ). This means that, for an arbitrary !-coloring of H with 5 
colors, there exists one color c;, 1 :::; i :::; 5, in such a way that the number of 
the all c;-edges is (1 x 14 + 3 x 3)/2. This is not an integer, a contradiction. I 

Based on the discussion above, the following problem is interesting for further 
research. 
Problem. What kinds of graphs G are off -class 2 when D.( G = 2? 
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