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Abstract 

We consider the following one-player game called Dundee. We 
are given a deck consisting of 8i cards of Value i, where i = 1, ... ,v, 
and an integer m :::; 81 + ... + 8 v • There are m rounds. In each round, 
the player names a number between 1 and v and draws a random 
card from the deck. The player loses if the named number coincides 
with the drawn value in at least one round. 

The famous Problem of Thirteen, proposed by Montmort in 1708, 
asks for the probability of winning in the case when v = 13, 81 = 
... = 813 = 4, m = 13, and the player names the sequence 1, ... ,13. 
This problem and its various generalizations were studied by nu-
merous mathematicians, including J. and N. Bernoulli, De Moivre, 
Euler, Catalan, and others. 

'Partially supported by the National Science Foundation, Grants DMS-0457512 and 
DMS-0758057. 
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However, it seems that nobody has considered which strategies 
of the player maximize the probability of winning. We study two 
variants of this problem. In the first variant, the player's bid in 
Round i may depend on the values of the random cards drawn in the 
previous rounds. We completely solve this version. In the second 
variant, the player has to specify the whole sequence of m bids in 
advance, before turning any cards. We are able to solve this problem 
when 81 = ... = 8 v and m is arbitrary. 

1 Introduction 

1.1 Historical Remarks 

The following Game of Thirteen (jeu du treize) was proposed by Mont-
mort [25, Page 185] in 1708. Randomly shuffle the standard deck of 52 
cards. For convenience, let us denote card values by numbers. Thus we 
have 13 different values 1, ... ,13, each appearing 4 times. In Round i, 
where i = 1,2, ... , 13, the player names Value i and deals a card from the 
remaining deck face up. If there is a coincidence, that is, the revealed card 
has the named value in at least one round, then the player loses. If there 
is no coincidence during the thirteen rounds, then the player wins. What 
is the probability of winning? 

This problem had a great influence on the development of probability 
theory. We refer the reader to a nice survey by Takacs [31]' from where 
most of the authors' knowledge on the history of the problem comes. 

A popular generalization, called the Problem of Coincidences (jeu de 
rencontre) , is to consider decks with card values 1, ... , v, each value re-
peated s times, and to study the number of coincidences. Various con-
tributions to this problem were made by Montmort himself [25, 26], Jo-
hann Bernoulli (see [26, pp. 283-298]), Nikolaus Bernoulli (see [26, pp. 
300-301 & 324]), De Moivre [24], Euler [10, 11], and others. Catalan [6] 
considered a further generalization where there are m ::; v rounds and 
the player names the sequence 1, ... , m. Greenwood [12], Kaplansky [16], 
Greville [13], and others made the first steps in the study of the version 
of the problem where the deck is not required to have the same number 
of cards of each value. Many introductory combinatorics or probability 
textbooks include a treatment of some version of the problem. Scientific 
articles on the topic (mostly of expository nature) still keep appearing, the 
more recent ones including Penrice [27], Cameron and Cohen [5], Boston et 
al. [3], Clarke and Sved [7], Doyle, Grinstead, and Snell [9], Knudsen and 

64 



Skau [IS], Michel [22], Linnell [19]' Sanchis [2S], Kessler and Schiff [17], 
Avenhaus [2], ManstaviCius [21], Diaconis, Fulman, and Guralnik [S]. (The 
annotated on-line bibliography [30] maintained by Torsten Sillke was very 
helpful in compiling this list.) 

However, it seems (as far as we could see) that nobody has systemat-
ically studied the version where the player has the freedom to choose the 
value to be named in each round and aims at maximizing the probability 
of winning. Here we try to fill this gap. Let us formalize the problem first. 

1.2 Some Definitions 

For integers n ?: m ?: 1, let us denote [m, n] = {m, m + 1, ... ,n - 1, n} 
and [n] = [1, n] = {I, ... , n}. Let the cards in the deck assume possible 
values 1, ... ,v and, for i E [v], let Si be the number of cards of Value i. We 
call such a collection of cards the (Sl, ... , sv)-deck and we call the sequence 
s = (Sl, ... , 8v) the composition vector or simply the composition of the 
deck. Let = 81 + ... + 8 v be the total number of cards. For example, 
the standard 52-card deck can be described as the (4, ... , 4)-deck where 4 
is repeated 13 times. We do not require that 81 = ... = 8 v in general. Let 
an integer m :::; be given. 

In the m-round s-game, the s-deck is randomly shuffled, there are m 
rounds, and in each round the player names a card value (which we call a 
bid) and then deals one card from the remaining deck face up. The player 
loses if there is at least one coincidence in Rounds 1 to m. We assume that 
the player knows the integer m and the composition of the deck (that is, 
the sequence (81, ... , 8 v )) in advance. 

Of course, the outcome of the game depends not only on the player's 
strategy but also on the (random) order of the cards in the deck. Here we 
assume that the shuffling is uniform, that is, all card orderings are equally 
likely. We look for strategies that maximize the probability that the player 
wins. 

Our initial interest in this problem came from the book by Harbin [14, 
Page 136], where he described the special case of the above game, namely, 
when s = (4, ... ,4) gives the standard 52-card deck and m = 52. Harbin 
calls this game Dundee, a name that we will use for the general case as 
well. 

There are two versions of the problem depending on whether or not the 
player's bid in Round i may depend on the random values that appeared in 
the previous rounds. If this is allowed, then we call such strategies adaptive; 
otherwise we call them advance. Let us discuss these two cases separately. 
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1.3 Adaptive Strategies 

Here the player remembers all the cards that have been dealt so far and 
thus knows all the remaining cards (but, of course, not their order). Then 
there is an intuitively obvious choice for his next bid: name a value that 
appears the least number of times in the remaining deck. We call a strategy 
that adheres to this rule at every round greedy. It is clear that, once the 
first k cards are exposed, the order of the remaining I;(s) - k cards is still 
uniform. So, if there is the same number of the remaining cards of Values i 
and j, then guessing either of these two values leads, up to a symmetry, to 
the same game tree (with the same branching probabilities). In particular, 
any two greedy strategies have the same chances of winning in the m-round 
game. So, by a slight abuse of language, we call any such strategy the greedy 
strategy. 

Clearly, the greedy strategy has the largest chances of surviving the next 
step, but this does not necessarily give the highest probability of winning in 
the whole game. For example, there might be another strategy performing 
worse in the first step, but resulting in better positions on the condition 
that the player has survived the first step. The latter situation is not an 
abstract speculation; in fact, it almost takes place in Dundee. For example, 
it is easy to show that if v = 2 and m = Sl + S2, then any strategy not 
missing a sure win is optimal (and so is as good as the greedy strategy). 
In fact, the case v = 2 is somewhat pathological: the probability of the 
player's winning in the general m-round case depends only on how often 
each value is called but not on the order in which this is made. 

Proposition 1 Let Sl S2 0 and 1 ::::: m ::::: Sl + S2. Let the player name 
Value 1 (resp. 2) b1 (resp. b2 ) times during b1 + b2 = m rounds. 

Then the probability of winning is (Note that 
this is non-zero if and only if b1 ::::: S2 and b2 ::::: Sl.) 

In particular, if m ::::: Sl - S2, then the (unique) optimal strategy is to 
name Value 2 all the time. Otherwise, the optimal strategies are exactly 
those for which the numbers Sl - b2 and S2 - b1 differ by at most 1. 

However, the following result states that the greedy strategy strictly 
beats any other strategy when there are at least three different card values. 
In particular, the set of optimal bids in each round does not depend on the 
number of the remaining rounds. 

Theorem 2 Let v 3 and s = (Sl, ... , sv) be an arbitrary vector whose 
entries are non-negative integers. Let m ::::: I;(s). Then the greedy strategy 
is the unique optimal strategy for the m-round s-game. 
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The proofs of these results and some further observations about the 
greedy strategy can be found in Section 2. 

Unfortunately, it seems that there is no general closed formula for gm(s), 
the probability that the greedy strategy wins the m-round s-game. How-
ever, there is an obvious recurrence relation for computing gm(s), namely 
Identity (3) here, that can be used to determine gm(s) for some small s. 
The computer code written by the authors (available from [20]) shows that 

( ) _ 47058584898515020667750825872 = 0 27019 
g52 - 174165229296062536531664039375 . . .. (1) 

13 times 

As we see from (1) the probability of winning in Dundee for the standard 
deck is not too small, more than 27%. However, Harbin [14, Page 136J 
writes: "/ have tried to do this and have not yet managed to deal right 
through the pack; it is quite amazing how impossible it is." It is conceivable 
that Harbin used some strategy similar to greedy but the discrepancy to (1) 
comes from not keeping track of the dealt cards. 

Finally, the problem of finding the strategies that minimize the prob-
ability of winning turns out to be easy and the answer is provided by the 
following result. Let us call a situation in the game, when the player is 
about to name a bid, decided if m' > + ... + - max( ... , where 

is the number of the remaining cards of Value i and m' is the number of 
the remaining rounds. Otherwise, the situation is undecided. 

Theorem 3 Let v 2: 2, Sl 2: '" 2: sv 2: 1, and s = (Sl,"" sv). Let 
c = I;(s) and let m :::; c. 

The minimum probability of winning is 0 if and only if the initial posi-
tion is decided (that is, if m > c - Sl). Moreover, the strategies that surely 
lose are precisely those strategies for which a position that is undecided can 
never appear. 

If m :::; c - Sl, then the smallest probability of winning is 1 

and all strategies achieving it are anti-greedy (always, name a most frequent 
remaining card or, equivalently, a card that occurs Sl times in the remaining 
deck). 

1.4 Advance Strategies 

Here it is required that the player's bid does not depend on the values of 
the previously turned cards. Clearly, the player can just name his whole 
sequence in advance and then start dealing cards. So we call such strategies 
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advance. The strategy of the Game of Thirteen is an example of an advance 
strategy. 

Since the order in which the values are named does not matter, we 
encode any advance strategy by the bid vector b = (b1, ... , bv ), where bi 

is the number of times that Value i is named. The entries of b are non-
negative integers satisfying = m. Let Pr(b, s) be the probability that 
the advance bid b wins the m-round s-game. 

Problem 4 (Advance Bid Problem) Given a composition vector s = 
(S1,"" sv) and an integer m ::::: find all vectors b = (b1, ... , bv ) 
that maximize Pr(b, s) among all vectors with non-negative integer entries 
summing up to m. 

Let c = be the total number of cards. Given a vector b with = 
m ::::: c, it is sometimes convenient to add to b extra c - m bids of Value 0 
that never causes a coincidence and to play the game for all c rounds. 
Then c! Pr(b, s) is exactly the permanent of the cx c-matrix M(b, s) whose 
entries are 0 and 1 depending of whether the bid corresponding to the row 
and the card value corresponding to the column are the same or not. Thus 
Problem 4 is somewhat reminiscent of the famous Minc Conjecture [23J 
proved by Bregman [4J (see also Schrijver [29J for a short proof) that asks 
for the maximum of the permanent of a 0/1 square matrix with given row-
sums. In our problem, if we have S1 = ... = Sv = s, then m row sums in 
M(b, s) are equal to c - sand c - m row sums are c. But, of course, we 
maximize the permanent over O/l-matrices of a special type only and these 
two problems seem to be different in flavor. 

The case of Problem 4 when the set I = {i : Si = O} is non-empty is 
trivial: the optimal bids are precisely those bids (b1, ... , bv ) with bi = 0 
whenever i f/. I. Also, if v = 2, then Proposition 1 happens to answer 
Problem 4 as well (because the probability of winning in the cases covered 
by Proposition 1 depends only on how many times each value is named). 

The regular deck (that is, the case when S1 = ... = Sv = s) seems to be 
the most interesting and natural case. Intuition tells us that any optimal 
m-round bid should be almost regular, that is, it should name each value 
nearly the same number of times, l m / v J or 1m / v 1- (Clearly, such a vector 
is unique up to a permutation of card values.) We prove that this is indeed 
true except the deck (1,1,1) is somewhat exceptional: there are other bids 
that perform as well as the regular bid. 

Theorem 5 Let v 2': 3, s = (s, ... , s) be a regular v-vector, and m ::::: sv. 
If s = (1,1,1) and m = 3, then there are 7 optimal advance bids for the 
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s-deck: (1,1,1) and the permutations of (2,1,0). Otherwise, the optimal 
advance bids are precisely almost regular v-vectors with sum m. 

Thus, the bid vector (1, ... ,1) which corresponds to the player's se-
quence 1,2, ... ,13 in Montmort's Game of Thirteen does maximize the 
probability of winning (as well as Catalan's bid 1, ... , m). 

Unfortunately, a complete solution to Problem 4 for an arbitrary deck 
s has evaded us although some further results are presented in Section 3. 
We have written a computer program for determining Pr(b, s), see [20]. 
Table 2 of Section 3 lists all optimal advance bids for some small decks. 
One can spot some patterns and our proof techniques may be applicable 
to some other cases than those covered by Theorem 5. However, this prob-
lem in full generality remains open. In fact, we do not know if there is 
an algorithm that on input s = (Sl, . .. , sv) produces all optimal advance 
bids (or even just one) for the s-deck with running time polynomial in 
v max(log Sl, •.. , log sv) (or even in c = L:( s)). For general c xc-matrices, 
Valiant [32] showed that the problem of computing the permanent is #P-
complete (thus there is no polynomial time algorithm for the corresponding 
decision problem unless P = NP) while Jerrum, Sinclair, and Vigoda [15] 
presented an algorithm that outputs an arbitrarily close approximation in 
time that depends polynomially on c and the desired error. 

The standard 52-card deck is covered by Theorem 5. Our code shows 
that the (unique) optimal advance bid for the 52-round game of naming 
each value 4 times wins with probability 

4610507544750288132457667562311567997623087869 
284025438982318025793544200005777916187500000000 = 0.01623 ... , (2) 

that is, the player wins in approximately 1 in 61.6 games. So the name 
Frustration Solitaire coined by Doyle, Grinstead and Snell [9] is not sur-
prising. Doyle et al [9] obtained the same numerical answer as in (2). This 
is reassuring since they used a different method (the Principle of Inclusion-
Exclusion) to derive (2). 

Finally, the solution to the problem of minimizing the chances of the 
player's winning easily follows from Hall's Marriage Theorem and our The-
orem 3. 

Corollary 6 Let v 2:: 2, 81 2:: ... 2:: 8 v 2:: 1, and s = (Sl, ... , sv). Let 
c = L:(s) and let m :::; c. We minimize Pr(b, s) over all bid v-vectors b 
with L:(b) = m. 

The minimum is 0 if and only if m > c - 81. It is achieved by b if and 
only if there is some i E [v] with bi > C - 8i. 
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If m ::; C - SI, then the minimum is IT::;; 1 c--;'S::i-i. It is achieved by b 
if and only if there is an index j E [v] such that Sj = SI and bj = m (while 
bi=OforalliE [v] \ {j}). I 

2 The Greedy Strategy 

2.1 The Case v = 2 

Recall that the greedy strategy always chooses a value that is least frequent 
among the remaining cards. (In particular, it does not miss a sure win if all 
cards of some value have been already dealt out.) Let us prove Proposition 1 
for a warm-up. 

Proof of Proposition 1. First, let us prove that if m = SI + S2 then any 
strategy succeeds with probability at most ("1 -1. We use induction on 
SI + S2. This upper bound is trivially true if min(sl' S2) = 0 so suppose 
otherwise. Let the player name, for example, Value 1 in the first round. 
Then he survives the first step with probability ; in this case the 

81 82 

remaining cards form a uniformly shuffled (SI' S2 - I)-deck. The induc-
tion assumption implies that the total probability of winning is at most 

(81 +82 -1) -1 = (81 +82) -1 finishing the inductive step. 81+82 81 81' 
Also, any strategy that does not miss a sure win achieves this bound 

since then all inequalities in the above proof become equalities. On the 
other hand, if for some strategy there is a feasible situation where it goofs 
the case min(sl' S2) = 0, then we can strictly improve the strategy by 
changing its behavior in this situation into a sure win (and using the old 
strategy in all other cases). So such a strategy cannot be optimal. This 
completely proves the case m = SI + S2 of Proposition l. 

Finally, assume that m = b1 +b2 < SI +S2 with b1 ::; S2 and b2 ::; SI. Let 
the player name Values 1 and 2 respectively b1 and b2 times during the first 
m rounds. Let P be the probability that this strategy wins the m-round 
game. If we condition on this, then the remaining deck has composition 
(SI - b2 , S2 - h). If the player is to continue playing (for example, greedily), 
then our previous argument for m = SI + S2 implies that the probability 
of no coincidence at all is P x By the same token, 

this probability equals also -1. Indeed, for i = 1,2, the condition 
b3- i ::; Si guarantees that if all cards of Value i have been dealt out, then 
the strategy has already exhausted all bids of Value 3 - i (and we have, 
in fact, b3 - i = Si), and so this strategy does not miss a sure win. Hence, 
P = (81 +8 2 -b1 -b2 ) (81 +82) -1 as required. 

81-b2 81 ' 
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Finally, all remaining claims of Proposition 1 follow from the symmetry 
and unimodality of the sequence (Sl +s:-m), when i ranges from 0 to Sl + 
S2 - m. I 

2.2 The Greedy Strategy is Optimal 

Here, we show that the greedy strategy is the unique optimal strategy if 
v 2: 3. The main difficulty is to find suitable statements amenable to 
induction. Once these are found, the proof, although somewhat lengthy, 
essentially takes care of itself. 

We need to introduce some notation and prove a few auxiliary results 
first. If a sequence has v entries, we call it a v-sequence. Let Vv,c consist of 
all non-increasing v-sequences of non-negative integers with sum c. From 
here until the proof of Theorem 2 (inclusive), we will always assume that 
the entries of composition vectors are ordered non-increasingly. The i-th 
partial sum of s is 

:Ei(s) = Sl + ... + Si· 

We will need the following operation: if Si 2: 1, then Si is the vector 
obtained from s by decreasing the i-th entry by 1 and reordering the new 
vector in the non-increasing manner (which is needed when i < v and 

Si = sHd· 
Let s E Vv,c and 0 :::; m :::; c. The function gm(s), which is the proba-

bility that the greedy strategy wins on the m-round s-game, satisfies the 
following relations. If the last entry Sv is zero or if m = 0, then gm(s) = 1. 
Otherwise, 

(3) 

Indeed, the greedy strategy names Sv in the first round while sd c is the 
probability that the first random card has Value i in which case the re-
maining c - 1 cards form the uniformly shuffied si-deck. 

Let q, s E Vv,c' We say that s majorizes q (and write this as s C:::: q) if 
:Ei(s) 2: :Ei(q) for every i E [v - 1]. (Recall that by the definition of Vv,c, 
:Ev(s) = :Ev(q) = c.) 

For s E Vv,c and q E Vv,d, let P(s, q) be the product over all i E [v] 
for which Si > qi of Si(Si - 1) ... (qi + 2)(qi + 1). We agree that if qi 2: Si 
for each i E [v], then P(s, q) = 1. Note that P(s, q) is in general different 
from P(q, s) and that P(s, q) is always strictly positive. 
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Lemma 7 If q, s E Vv,c and q s, then 

P(q, s) :::; P(s, q). (4) 

Moreover, if q =I- s, then the inequality is strict. 

Proof. We use induction on e + v. The base cases are e E {O, I} and v 
arbitrary or v = 1 and e is arbitrary. In either case the equality = 

= e implies that s = q so there is nothing to do. So suppose that 
min( v, e) > 1 and the validity of the lemma has been verified for all pairs 
( v, e) with a smaller sum. 

Case 1 There is an index i E [v - 1] such that = 
Fix any such index i. Let q' = (q1, ... , qi), q" = (qi+1, ... , qv), S' = 

(S1' ... ' Si), and s" = (Si+1' ... ' sv). Our assumptions imply that the se-
quences s' and q' (resp. s" and q") have the same sum e' (resp. e") and 
length i (resp. v - i). By the assumption of Case 1, we have that for any 
j E [v - i-1], 

= - :::; - = 

so q" s". Also, q' s'. Since by concatenating q' and q" (resp. s' and 
s") we obtain the non-increasing sequence q (resp. s), we have 

P(s, q) 
P(q, s) 

P(s', q')P(s", q"), 

P( q', s')P( q", s"). 
(5) 

(6) 

Since the length of each q' and q" is strictly smaller than v (while the sums 
e',e" are at most e) the induction hypothesis applies to the pairs (s',q') 
and (s", q") and gives the required by (5) and (6). Moreover, if q =I- s, then 
q' =I- s' or q" =I- s", and (4) is strict by the induction assumption. 

Case 2 Not Case 1. 

In particular, we have S1 2: q1 + 1 2: 1 and qv 2: Sv + 1 2: 1. Recall that 
Si is the sequence obtained from s by decreasing the i-th entry by one and 
reordering the terms. The sequences qV and S1 of non-negative integers 
have the same length v and sum e - 1. Also, s1 qV because we are not 
in Case 1 (and thus 2: + 1 for every 1 :::; i :::; v-I). Using the 
induction assumption and the inequalities qv > Sv and 81 > q1, we obtain 

_P-,--(q:::.-,s--"-) _ P( v 1) < P( 1 V) _ P(s,q) - - q,s _ s,q - . 
qv 81 

Now, the required (strict) bound follows from 81 > q1 2: qv. I 
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Lemma 8 For any sequences q, s E Vv,c and any i E [v] such that Si 2: 1, 
we have 

(7) 

Proof. Let j be the maximum index such that Sj = Si (possibly j = i). 
Since Si = sj, it is enough to prove the lemma for sj. Note that we do not 
have to reorder terms when we compute sj. If qj 2: S j, then 

P(s, q) 
P(q,sj) 

Otherwise (if Qj < Sj) we have 

P(s, q) 
P(q,sj) 

P(sj, q) 

sjP(q, s). 

Sj P(sj, q) 

P(q,s). 

By multiplying these identities, we obtain the required equality in either 
case. I 

Lemma 9 For any sequences s, q E Vv,c with q ::5 s and any m ::; c, we 
have 

(8) 

Moreover, if additionally v 2: 3 and q i=- s, then the inequality in (8) is 
strict. 

Proof. We use induction on c + v. If c E {O, I} or if v = 1, then s = q 
and there is nothing to do. If m = 0, then we are done by Lemma 7. So 
suppose that min( c, v) > 1 and m 2: l. 

Let I = {i E [v - 1] : Si 2: I}. Note that v rf. I by the definition. The 
assumption q ::5 s implies that qi 2: 1 for every i E I. Thus qi and Si are 
well-defined when i E I. By a version of (3) that also works in the case 
Sv = 0, we have 

P(q, s) " ( i) --- Sigm-l S 

C iEI 

P(s, q) " ( i) --- qigm-l q . 
C iEI 

The inequality (8) will follow if we show that for every i E I we have 
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Claim 1 qi si for every i E I. 

Proof of Claim. Take any i E T. Let h (resp. j) be the maximum index 
such that % = qi (resp. 8j = 8i). Then L:f(q) - L:f(qi) is 0 if f E [h - 1] 
and is 1 if h ::; f ::; v. The analogous claim holds for s. 

Suppose that this index i violates Claim 1. This is possible only if h > j 
and there is an f E [j, h - 1] such that 

(10) 

If f > j, then L:f-1(q) ::; L:f - 1(s) and (10) imply that 8f ::; qf = 
qi· Since 8 f + 1 ::; 8 f ::; qi = qf + 1, in order to prevent the contradiction 
L:f(q) + q/+1 > L:f(s) + 8/+1, we have to assume that 8f = qf' Thus, we 
can decrease f by one without violating (10). By iterating this argument, 
we can assume that f = j. 

By (10) and L:j+ds) Z L:j+1 (q), we have 8j+1 Z qj+l' By the definition 
of j and h and the inequality h > j, we have 8j > 8j+1 Z qj+1 = qj. We 
conclude, again by (10), that 

a contradiction which proves the claim. I 
Let i E I be arbitrary. By Claim 1, we can apply induction to (si, qi) 

and m - 1, obtaining 

(11) 

Lemma 8 (applied twice) gives (7) and the identity qiP(qi, Si)P(Si, q) = 
P(Si,qi)P(q,Si). By multiplying these two identities, we obtain 

P(s, q)qi P( q, S )8i 
P(Si,qi) P(qi,Si)' 

(12) 

By multiplying (11) and (12) we obtain the required inequality (9). This 
proves (8). 

Finally, let us assume that v Z 3 and q i= s. Suppose that m > 0, 
for otherwise (8) is strict by Lemma 7 and we are done. In order to show 
that (8) is strict it is enough to show that (11) is strict for at least one 
i E I. By induction, it is enough to find an i E I such that qi i= Si. 

If there is an i E I such that L:i(s) Z L:i(q) + 2, then sl i= q1 and we 
are done. 

So, suppose that L:i(s) ::; L:i(q) + 1 for every i E I. We cannot have 
L:i (s) = L:i (q) for all i E I for otherwise 8i = qi for every i E I, but then 
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= implies that s = q, contradicting our assumption. Let j E I 
be the smallest index such that 8j i- qj. It follows that 8j = qj + 1. If 
sj i- qj, then we are done, so suppose otherwise. We have = 
and = It follows that qj+1 = qj = 8j - 1 and 8j+1 < 8j. 

If j + 1 E I then we are done by applying the induction assumption to 
sj+1 i- qj+1. 

So, suppose that j + 1 rt I. There are two possible reasons for this. 
Suppose first that j < v and 8j+1 = o. We cannot have qj+1 = 0 for 
otherwise qj+2 = ... = qv = 0 and = - 1. Also, qj+1 < 2 for 
otherwise (s) < (q). Thus qj+1 = 1, which in turn implies that 
% = 1 and 8j = 2. But now, in view of v 2: 3, we have q1 i- S1. Indeed, 
the (j + 1)-th element of S1 is 0 while the (j + 1)-th element of q1 is at least 
1. Finally, if j + 1 rt I because j + 1 = v, then one can argue similarly to 
above that qj = qj+1 = 8j - 1 = 8j+1 + 1 and S1 i- q1. This completes the 
proof of the lemma. I 

Now we are ready to prove Theorem 2. 

Proof of Theorem 2. Without loss of generality, we can assume that 81 2: 
... 2: 8 v 2: o. Let c = = 81 + ... + 8 v be the number of cards. Assume 
that m 2: 1 for otherwise there is nothing to do. The proof uses induction 
on c. The base case c = 1 is trivial, so assume c 2: 2. If 8 v = 0, then the 
claim is trivially true, so assume that 8 v 2: 1, that is, each 8i is positive. 

Suppose that we have some Strategy A. Let am(q) be the probability 
that Strategy A wins the m-round game on the q-deck. Suppose that A 
selects Value j during the first step. If some value h E [v] \ {j} turns up in 
the first round, then Strategy A has to deal with the (m - I)-round game 
on sh. Let am -1 (sh) be the probability A that wins, when we condition on 
Value h appearing in Round 1. Similarly to (3), we have 

(13) 

where the last inequality is obtained by applying, for each h i- j, the 
induction assumption to the deck obtained after the removal of a card of 
Value h. By (3), in order to prove the optimality of the greedy strategy 
it is enough to prove the following statement which involves the function 
gm-1 0nly: 

(14) 
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Cancellations show that (14) is equivalent to Svgm_1(SV) < Sjgm-1(sj), 

which can be rewritten as 

(15) 

This follows from Lemma 9 by noting that SV t sj. 

Finally, suppose that the above Strategy A achieves this bound and 
we are not in the trivial base case Sv = o. Then the inequality (13) is 
equality. Since each Si is positive, we have a m _1(sh) = gm_1(sh) for every 
h E [v] \ {j}. The induction assumption implies that Strategy A plays 
greedily after the first step. Also, we must have equality in (15). Since 
v :2: 3, the second part of Lemma 9 implies that sj = SV. Thus sj contains 
Sv - 1, which is strictly smaller than any element of s. It follows that 
Sj = SV. We conclude that Strategy A is the greedy strategy. I 

2.3 Worst Adaptive Strategies 

On the other hand, the case when the player wants to minimize the prob-
ability of winning, is easy. 

Proof of Theorem 3. If the current position is decided, then by naming 
the most frequent remaining value, say 1, the player can ensure that either 
he loses in the next round (if Value 1 appears) or the new position is 
decided (because max( , ... , = does not change so both m' and 

- max(si, ... decrease by 1). On the other hand, if a position is 
undecided and the game continues, then the remaining deck has cards of 
at least two different values. So the player survives the next round with 
positive probability, in which case the new position is necessarily undecided. 
These observations clearly imply the first part of Theorem 3. 

So, suppose that m:S c - Sl. Let b' = (m, 0, ... ,0). Let Ei (resp. En 
be the event that the player's strategy (resp. the advance b'-bid) survives 
the first i :S m rounds. We show by induction on i that Pr(Ei ) :2: Pr(En 
with the case i = 0 being trivially true. Let us prove the claim for i + 1 
from the induction assumption for i. We have 

, (') (' I ') (') c - i - Sl Pr(Ei+l) = Pr Ei Pr Ei+1 Ei = Pr Ei .. 
c-z 

On the other hand, out of c - i remaining cards there are at most Sl cards 
of the value mentioned by the current bid. Hence 

c - i - Sl 
Pr(Ei+1) :2: Pr(Ei) .. 

c-z 
(16) 
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We conclude that Pr(Ei+!) ?:: Pr(EI+l)' as required. 
Finally, if some strategy deviates from the anti-greedy one, let us say 

this can happen in Round i + 1 for the first time, then (16) is clearly 
strict (note that Pr(Ei ) = PreEn is positive) and this strategy cannot be 
optimal. I 

2.4 Playing Until All Cards Are Turned Face Up 

For s E Vv,e, let g(s) denote gees), the probability that the greedy strategy 
wins in the game when the number of rounds equals the total number of 
cards. We feel that that is is the most interesting case. So, in this section, 
we study the properties of this function only. 

8 
0.1884 

v 9 10 11 12 13 I 14 15 I 
g(s) 0.2080 0.2258 0.2419 0.2566 0.2701 I 0.2826 0.2942 I 

Table 1: The values of g( 4, ... ,4) 

Table 1 lists the value of g(s) rounded down to the 4-th decimal digit, 
where s = (4, ... ,4) is the regular vector of length v 15. By looking at 
the values of g(4, ... , 4) one notices that this is an increasing function of v. 
In fact, the following more general phenomenon happens. 

Proposition 10 Let v ?:: 1 and let s be a v-sequence of non-negative in-
tegers. Let q be obtained from s E Vv,c by inserting an extra term Sv+!' 
(For convenience, we do not require that the sequences are monotone; in 
particular, the inserted element Sv+! need not be the smallest element of 
q.) 

Then g( q) ?:: g(s). Moreover, if all elements of s are positive, then this 
inequality is strict. 

Proof. If Si = 0 for some i E [v], then the claimed inequality g(q) ?:: g(s) is 
trivially true since both parts equal 1. So suppose otherwise. By Theorem 2 
it is enough to give an example of a strategy which wins on the q-deck with 
probability strictly larger than g( s). 

The player plays in the following manner. If no cards of Value v + 1 
remain in the deck, then Player wins by naming Value v + 1. Otherwise, 
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he ignores Value v + 1 and applies the greedy strategy with respect to 
Values 1, ... , v. In other words, he mentions a least frequent remaining 
value among 1, ... , v unless there is a sure win by naming Value v + 1. 

Clearly, had the player completely ignored Value v + 1, his chances of 
winning would have been exactly g(s). However, with positive (although 
perhaps very small) probability all cards of Value v + 1 come on the top 
of the shuffled deck. This is a win for the player, which pushes his overall 
chance strictly above g(s). I 

Here is another "monotonicity" property of the function g(s). 

Proposition 11 Let s = (Sl, ... , sv) be an arbitrary (not necessarily mono-
tone) sequence and let q = (Sl +1, S2, . .. ,sv). Then g(s) g(q). Moreover, 
if Si > 0 for every 2 i v, then the inequality is strict. 

Proof. In order to prove the inequality, it is enough by Theorem 2 to specify 
a strategy for the s-deck whose probability of winning is at least g(q). A 
randomized strategy will also do here. 

The player takes a uniformly shuffled s-deck and inserts randomly a 
new card, the joker, with all 1::(s) + 1 positions being equally likely. Then 
he uses the greedy strategy, regarding the joker as a card of Value 1. Also, 
we may agree that if 1 is among the least frequent remaining values, then 
the player necessarily names 1. 

If the joker would cause a coincidence as a regular card of Value 1, then 
the player would win with probability exactly g(q). But let the joker be a 
lucky card and never give a coincidence. Thus, effectively, the player plays 
against the s-deck. The probability of win (if the player follows the same 
strategy) cannot go down. This proves the desired inequality. 

Moreover, the inequality is strict if Si is positive for each 2 i v. 
Indeed, it is possible to order the q-deck so that the greedy strategy loses, 
but it would have won if one of the Value 1 cards were replaced by the 
joker. This is done by putting some cards of Value 1 on the top of the 
deck so that the greedy strategy will survive up until the first time it has 
to name Value 1, then placing a Value 1 card at that spot, and then again 
ensuring that the greedy strategy would survive the remainder of the deck 
if that card were replaced by the joker. I 

Also, the following more general theorem implies that the entries in the 
second row of Table 1 converge to 1. 
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Theorem 12 For every integer £ and every real E > 0 there is a Vo such 
that g(s) 1 - E for every deck s = (Sl,"" sv) with v Vo and each Si 

being at most £. 

Proof. Fix £ and E > 0, and let v 00. Let s satisfy the assumptions of 
the theorem. Assume that each Si is positive for otherwise g(s) = 1 and 
there is nothing to do. Let e = v. By Theorem 2 it is enough to 
specify a strategy that wins with probability at least 1 - E. 

Let a = l v j In v J, where In denotes the natural logarithm. (We do not 
try to optimize the values.) By the pigeonhole principle, we can find a 
number m E [£] and a set M [v] such that IMI = fvj£l and Si = m 
for every i E M. Let us call the values in M special and the remaining 
ones ordinary. Let the player name ordinary values in an arbitrary fashion 
until the deck runs out of some special value in which case the player starts 
naming this value (and necessarily wins). 

The probability that the player loses at any particular round i :::; a is at 
most £j(c - a + 1) :::; £j(v - a + 1) whatever the player does. By the union 
bound, the probability that the player loses within the first a rounds is at 
most a x £j(v - a+ 1):::; Ej2. 

For i E M, let Xi be the event that all cards of Value i appears among 
the first a cards in a uniformly shuffled s-deck. Let the random variable N 
be the number of indices i E M such that Xi occurs. In order to prove the 
theorem, it is enough to show that 

Pr(N = 0) :::; Ej2. (17) 

We use the second moment method (see, for example, Alon and Spencer 
[1, Chapter 4]) to prove (17). Recall that £ is fixed, 1 :::; m :::; £, and v 00. 

Thus a 00 and aje O. 
The probability Pr(Xi) = (;:.) -1 does not depend on i E M; denote 

it by p. Since e > a, the expectation of N is 

£ e-m+1 

Also, the covariance of Xi and Xj for distinct i, j E M is 

Cov(X X.) = Pr(X 1\ X) _ p2 = (;:.)(a-;,.m) _ (;:.) 2 = o(p2) 
" J J J . 

Thus Var(N) :::; E(N) + :Ei#j COV(Xi' Xj) = o(E(N)2). By Chebyshev's 
inequality ([1, Theorem 4.3.1]), the probability that N = 0 is at most 
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Var(N)jE(N)2 = 0(1). In particular, (17) holds if v is sufficiently large, 
depending only on e and E. I 

Unfortunately, we could not find any closed formula for g(s). But for 
some special cases, explicit formulas exists. One example is 

( k 1) __ 1_ _1_ _ 1 
g q" - q + 1 + k + 1 q + k + 1 (18) 

Here is a direct combinatorial proof of (18). Suppose we have one Ace, 
q 1 Queens, and k 1 Kings. The greedy strategy keeps calling Ace 
until either the Ace appears (and the player loses) or Queens or Kings run 
out (and the player wins). The probability that the Ace comes after all 
Queens is 1 j (q + 1), after all Kings is 1 j (k + 1), after all Kings and Queens 
is Ij(q + k + 1). A simple inclusion-exclusion gives (18). 

Also we have, for example, 

g(i, 2, 2) 
1 8 6 6 8 
(3 + 3(i + 1) - i + 2 + i + 3 - 3(i + 4)' i 2, 

g(i, 3, 2) 
1 2 9 12 5 
10 + i + 1 - i + 3 + i + 4 - i + 5' i 3, 

g(i, 4, 2) 
1 2 2 4 16 20 8 

15 + i + 1 - i + 2 + i + 3 - i + 4 + i + 5 - i + 6' i 4, 
1 51 39 

20 + 10 (i + 1) - 2 (i + 2) 
g(i, 3, 3) 

39 48 33 48 
i + 3 - i + 4 + i + 5 - 5 (i + 6) , i 3. + 

Each of the above identities can be verified by induction on i using (3) 
(and the previous identities). The calculations are straightforward but 
messy, so we omit them. Further identities along these lines can be writ-
ten but we could not spot any pattern. We decomposed the right-hand 
sides into partial fractions as this representation looked most aesthetically 
pleasing. We do not have any interpretation of the coefficients except for 
the constant terms: namely, i = g(2,2), /0 = g(3,2), 115 = g(4,2), and 
210 = g(3, 3). This makes sense because, for any fixed S2, ... , Sv, we have 

lim g(Sl,S2, ... ,Sv) =g(S2, ... ,Sv). 
81---+ 00 

This identity can be proved by noting that the probability that the last 
I = max(S2, ... , Sv) + 1 cards of a uniformly shuffled deck will all have 
Value 1 is 1- 0(1) as sl -+ 00. (Indeed, the expected number of cards with 
value different from 1 among the last I cards is I x 81 = 0(1) 
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so by Markov's inequality there is none almost surely.) Thus, if the above 
event happens, then the greedy strategy never names Value 1. Hence, it 
wins with probability g(S2, ... , Sv) + 0(1). 

3 Advance Strategies 

Recall that, for vectors band s of the same length v with :s: 
Pr(b, s) denotes the probability that the advance bid b wins against the 
s-deck. Also, we call b an optimal bid for the s-deck if Pr(b' , s) :s: Pr(b, s) 
for every v-vector b ' with = 

Here we prove Theorem 5. For this purpose, it will be convenient to 
prove a weaker version of it first, namely that at least one optimal bid is 
almost regular. This clearly follows from Lemma 13 below. Although the 
conclusion of Lemma 13 that Si > Sj implies bi :s: bj is not needed for 
the proof of Theorem 5, we include it here since this makes the proof of 
Lemma 13 only slightly longer. 

Lemma 13 For every composition vector s = (S1, ... , sv) and any integer 
m :s: (s) there is an optimal advance bid b with (b) = m such that, for 
every i,j E [v], Si = Sj implies that Ibi - bjl :s: 1 and Si > Sj implies that 
bi :s: bj . 

Proof. The lemma is trivial if some Si is 0 or if v = 1. Also, the lemma 
follows from Proposition 1 if v = 2. So assume otherwise. Among all 
optimal advance bids b with = m choose one that minimizes 

L I(Si + bi ) - (Sj + bj)l· (19) 
1:-S:i<j:-S:v 

We claim that this vector b satisfies the lemma. Suppose on the con-
trary that this is not the case. Without loss of generality we can assume 
that the conclusion of the lemma is violated for indices 1 and 2 with b1 > b2 . 

Thus we have that S1 = S2 and b1 2: b2 + 2 or that S1 > S2. In either case, 
we have S1 + b1 2: S2 + b2 + 2. 

Let b ' = ... where = b1 -1 2: 0, = b2 + 1, and = bi 

for i 2: 3. Thus b ' is obtained from b by replacing one guess of Value 1 by 
Value 2. It is easy to see that for any numbers a 2: b + 2 and c, we have 
la-cl+lb-cl 2: l(a-1)-cl+l(b+1)-cl while clearly la-bl > l(a-1)-(b+1)1. 
This observation, when applied to a = S1 + b1, b = S2 + b2, and c = Si + bi 

81 



for 3 ::; i ::; v, shows that the replacement of b by b' would strictly decrease 
the expression in (19). Hence, b ' cannot be optimal, that is, 

Pr(b/, s) < Pr(b, s). (20) 

Let us set up some notation that we need in order to derive a contradic-
tion from (20). Let e = be the total number of cards and recall that 
m = Let us order both bids band b' by value and let Bi (resp. Bn 
consist of the positions where the bid b (resp. b/) suggests Value i. Thus 
the sets Bi (as well as the sets partition [m] and, for every i E [v], 
we have IBil = bi and = b;. Also, Bi = for every i E [3, v] while 
BI = [bIJ = Bi U {bd, and = [bl, bl + b2] = B2 U {bd· 

Let C be the set of all cards in the deck. Let Si C consist of all 
cards of Value i. A random shuffling of the deck is encoded by a bijection 
a : C -+ tel. (For convenience, assume that en [e] = 0.) The value a(x) 
is the position at which Card x appears. Thus, for example, the bid b 
wins for a if and only if Bi n a(Si) = 0 for every i E [v]. Such a bijection 
a will be called a b-winning bijection. Of course, only the first m card 
values, namely a-I (1), ... ,a-I(m), are needed to determine the outcome 
of the game but we record the whole bijection a for the convenience of 
calculations. 

The bijection a is chosen uniformly at random from all c! choices. We 
will need the following random variables determined by a. Let DE [v] be 
the value of the card that appears in Position h. (Recall that bl is the 
unique element of BI \ Bi.) Let NI = IBi n a(S2)1 and N2 = IB2 n a(Sdl· 

Let cI> consist of all bijections a : C -+ [e] that produce different out-
comes for the bids band b /, that is, those for which one bid wins while the 
other loses. Formally, 

cI> = {a: D E {I, 2}, a(SI) n Bf = 0, Vi E [2, v] a(Si) n Bi = 0}. 

By definition, any bijection not in cI> contributes the same amount to 
both sides of (20). Hence, (20) implies that cI> =I- 0 (so we can condition 
on cI» and that we have the following inequality between the conditional 
probabilities: 

Pr(D = 11a E cI» < Pr(D = 21a E cI». (21) 

Let W = {NI + N2 : a E cI>}. Fix an arbitrary w E W. Let 
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Since W E W, the set <1>w is non-empty. We have 

w 81 - W + i 
L Pr(N1 = i 1 (J E <1>w), (22) 
i=O 81 + 82 - W 

w . 
'"""' 82 - 2 ---- Pr(N1 = i 1 (J E <1>w). (23) 
i=O 81 + 82 - w 

Note that w < 81 + 82 because w E W implies that at least w + 1 cards 
of Values 1 or 2 are present in the deck. If we subtract (23) from (22) and 
multiply the result by 81 + 82 - w 2: 1, we get by (21) that 

w 

L(2i+81 -82-W) Pr(N1 = i 1 (J E <1>w) = E(2N1 +81-82-W 1 (J E <1>w) < 0, 
i=O 

(24) 
which is the conditional expectation of2N1 +81-82-W = N1-N2+81-82. 
Let us establish a contradiction by showing that it is non-negative. 

Trivially, each bijection (J E <1>w with N2 < 81 - 82 makes a positive 
contribution to the left-hand side of (24). Let us consider the remaining 
cases. Define 

Uw = {(N1,N2 - 81 + 82): (J E <1>w}. 

Claim 1 If (l, k) E Uw and k > l, then (k, l) E Uw . 

Proof of Claim. We show by induction on i that for every i = 0, ... , k - l, 
we have (l+i, k-i) E Uw . Suppose this is true for some i with 0:::: i < k-l. 
Take a witness (J E <1>w. Pick an x E \ (J(52). This set is non-empty 
because n (J(52 ) 1 = l + i < k while (l, k) E Uw implies = 2: b2 2: 
k + 81 - 82 2: k. Next, pick an element y E B2 n (J(5d, this set having 
k - i + 81 - 82 > 0 elements. Also, pick an element z E (J(52 ) \ This set 
is non-empty because (l, k) E Uw implies that k + 81 - 82 :::: 82 :::: 81, that is, 
k :::: 82, while n(J(52 )1 = l +i < k :::: 82. (Note that we allow z to be bI-) 
Let a new bijection (J' be obtained by composing (J with the permutation 
of [c] that fixes every element of [c] except it permutes x, y, z cyclically in 
this order. Then (J' E <1>w, which shows that (l + i + 1, k - i - 1) E Uw. 
This finishes the inductive proof. I 

For (k, l) E Uw , let 

<1>k,1 = {(J E <1> : N1 = k, N2 = l + 81 - 82} =I- 0. 

Clearly, the sets <1>k,1 are pairwise disjoint and their union over all (k, l) E 
Uw is exactly <1>w. By definition, for every (k, l) E Uw we have 

(25) 
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If (k, l) E Uw , but (l, k) tf. Uw , then k > l by Claim 1. By (25), 
we have k > (w - 81 + 82)/2. Thus for an arbitrary (j E <Pk,l, we have 
N1 > (w - 81 + 82)/2. Here, the contribution to the left-hand side of (24) 
is strictly positive. 

Thus, let us consider the contribution to (24) by a pair of numbers k 2: l 
such that k + l = w - 81 + 82 and both (k, l) and (l, k) belong to Uw ' Let 
us prove that 

(26) 

Let us calculate l<Pk,d. First, we have to map some k elements of 8 2 into 
Bi (giving (bi )k! possibilities). Then we have map l+81 -82 elements of 
8 1 into B2 (giving (l+s:l_sJ (l+81 -82)! ways). Finally, we have to 
take care of the remaining unassigned cards that include 81 - (l + 81 - 82) = 
82 - l cards of Value 1, 82 - k cards of Value 2, and 8i cards of Value i for 
i 2: 3. The number M of possibilities at this step does not depend on the 
previous choices. Hence 

Similarly, we obtain 

Note that the only difference in the definition of M' when compared to 
that of M is that we have 82 - k cards of Value 1 and 82 -l cards of Value 2. 
But the cards of Value 1 and 2 behave identically in the definition of M 
or M', so every legitimate M-assignment gives a legitimate M'-assignment 
by swapping Values 1 and 2. Hence, M = M'. Also, since <Pk,l and <Pl,k 
are non-empty, we have M = M' > O. Thus we have 

l<Pl,kl k!(l + 81 - 82)! - k)!(b2 -l - 81 + 82)! 
l<Pk,d l!(k + 81 - 82)! x - l)!(b2 - k - 81 + 82)! 

k-l-1 . k-l-1 . II k - Z x II b2 - l - 81 + 82 - J < 1. 
. k + 81 - 82 - i. b' - l - j 
,=0 )=0 1 

Here we used the inequalities 81 2: 82 and 2: b2 2: k 2: l 2: O. (Note that, 
since (l, k) E Uw , we have b2 2: k + 81 - 82 2: k.) This proves (26). 

Now, k 2: l implies by (25) that 2k + 81 - 82 - w 2: a 2: 2l + 81 - 82 - W. 
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By (26), the contribution of <Pk,l U <Pl,k to the left-hand side of (24) is 

Putting all together, we obtain a contradiction to (24), proving the 
lemma. I 

Proof of Theorem 5. Suppose on the contrary that the theorem is false, 
that is, we can find an optimal vector that is not almost regular. By 
iteratively changing its entries as in the proof of Lemma 13, we eventually 
reach an almost regular optimal vector b'. Let b be the optimal bid from 
the previous step, i.e., the last bid that contradicts Theorem 5 from the 
obtained chain of optimal bids. Without loss of generality, assume that 

= b1 - 1 and = b2 + 1. Let us recycle the notation that we used in 
the proof of Lemma 13. Let U = UwEwUw. 

Since :s: 8 for each i E [v], we can find a partition [c] = UY=l C i such 
that ICil = 8 and Ci ;2 for every i E [v]. Note that b1 E C2 . 

A bijection (J" that maps bijectively each Si into Ci+1, where we agree 
that Cv+1 = C 1 , shows that <P =1= 0 and that (0, b2 ) E U. (Recall that 
v ?: 3 by the assumption of the theorem.) Thus one can condition on the 
non-empty set <P. It follows that each of inequalities (20), (21), and (24) 
is equality now. We must have b2 = 0 for otherwise the inequality (26) 
is a strict for (k, l) = (b2,0). (Note that (b2, 0), (0, b2) E U by Claim 1 
of Lemma 13.) Also, we have b1 ?: 2 for otherwise b is almost regular, 
contradicting our assumption. 

We cannot have (k,O) E U with some k > 0 (for this would make (26) 
strict if (0, k) E U or would directly make (24) strict otherwise). It follows 
that v :s: 3: otherwise a bijection (J" : C [c] that maps Si into Ci+1 for 
i E [3, v-I] and satisfies O"(St) = C3, (J"(S2) = C1 and (J"(Sv) = C2 shows 
that (b1 - 1,0) E U, a contradiction. But if v = 3 and 8 ?: 2, then we get 
a contradiction (1,0) E U by taking (J" that maps some element from each 
of Sl, S2, and S3 into correspondingly C3, C1 , and C2 \ {bt}, and then 
maps the remainder of each Si into the unassigned part of Ci+1 for i E [3]. 
Finally, the case v = 3 and 8 = 1 (and 1 :s: m :s: 3) is easily seen to satisfy 
Theorem 5. I 

Table 2 lists all optimal advance bids b with I.;(b) = I.;(s) for all 3-
vectors s = (81,82,83) such that 81 ?: 82 ?: 83 ?: 1, and I.;(s) :s: 11. If we 
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s b s b s b 
{l,l,l} {0,1,2} {4,3,1} {0,2,6} {4,4,2} {2,2,6} 

{l,l,l} {4,2,2} {0,4,4} {4,3,3} {2,4,4} 
{2,1,1} {0,2,2} {3,3,2} {2,2,4} {9,1,1} {0,5,6} 
{3,1,1} {0,2,3} {7,1,1} {0,4,5} {8,2,1} {0,3,8} 
{2,2,1} {0,1,4} {6,2,1} {0,3,6} {0,4,7} 

{0,2,3} {5,3,1} {0,2,7} {7,3,1} {0,2,9} 
{1,1,3} {5,2,2} {0,4,5} {0,3,8} 

{4,1,1} {0,3,3} {4,4,1} {O, 1, 8} {7,2,2} {0,5,6} 
{3,2,1} {0,2,4} {0,2,7} {6,4,1} {0,2,9} 
{2,2,2} {2,2,2} {l,1,7} {6,3,2} {0,4,7} 
{5,1,1} {0,3,4} {4,3,2} {0,3,6} {5,5,1} {0,1,1O} 
{4,2,1} {0,2,5} {0,4,5} {0,2,9} 
{3,3,1} {0,1,6} {1,3,5} {1,1,9} 

{0,2,5} {3,3,3} {3,3,3} {5,4,2} {0,3,8} 
{1,1,5} {8,1,1} {0,5,5} {0,4,7} 

{3,2,2} {0,3,4} {7,2,1} {0,3,7} {l,3,7} 
{1,3,3} {6,3,1} {0,2,8} {5,3,3} {0,5,6} 

{6,1,1} {0,4,4} {6,2,2} {0,5,5} {1,5,5} 
{5,2,1} {0,2,6} {5,4,1} {0,2,8} {4,4,3} {3,3,5} 

{0,3,5} {5,3,2} {0,4,6} 

Table 2: Optimal advance bids b with = for some 3-vectors s. 

have 8i = ... = 8j for some i < j, then, in order to save space, we include 
only those optimal b such that bi :::; ... :::; bj . The reader is welcome to 
experiment with our computer code, which can be found in [20]. 

By looking at Table 2 and by computing further optimal vectors, one 
can spot patterns in some special cases (and perhaps even rigorously prove 
them) but the general solution to Problem 4 (or even just a general con-
jecture) evaded us so far. 
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