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Abstract 

Hamming graph H ( n, k) has as vertex set all words of length n 
with symbols taken from a set of k elements. Suppose L denotes the 
set Oz, with Oz = { I: e} + I: er + ... + I: e7 I Jj n Jj, = 

iEI1 iEJ2 iEI,. 

0(j =/= j'), IU7= 1 IJI = l} for 0 :S: l :S: nand On+l := {l}. For 
any two element x, y E L, define x :S: y if and only if y = i or 
Ij <;;: IJ for 1 :S: j :S: k. Then L is a lattice, denoted by La. Reversing 
the above partial order, we obtain the dual of La, denoted by LR. 
This article discusses their geometric properties, and computes their 
characteristic polynomials. 

AMS classification: 05B35; 20G40 
Keywords: Lattice; Geometric lattice; Hamming graph 

1 Introduction 

Hamming graph H(n, k) has as vertex set all words of length n with 
symbols taken from a set of k elements. We will take as our set of k elements 
the set {a1 ,a2 ,··· ,ak}· 

Let ei be the vector with n coordinates that has a aj in position i 
and 0 elsewhere. Then, each word in H(n, k) is simply a sum of some 
e}, e;, · · · , ( i E Ij for 0 ::::; j ::::; k), with the only restrictions on Ij's that 

Ij n Ij' = 0 (j =/- j'), and Ii = {1,2, · · ·, n}. 
For 0 ::::; l ::::; n we set Dz = { I: e} + I: e; + · · · + I: I lj n 

iEl1 iEh iEh 

Ij' = 0 (j =1- j'), I Ijl = l}. Given any X E Dz, we represent X 

(If, 12, · · · ,Ik) where x = I: el + I: e; + · · · + I: Ij n lj, = 0 (j =f 
iElf iElf iEl't.; 

j') and I Ijl = l. 
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Notice that Do := { (0, 0, · · · , 0)} and we add a dummy element f above 
all other elements, defining Dn+l := {i}, that is X:::; i, Vx E n[. 

Suppose L denotes the set D1. For any two elements x, y E L, 
define x :::; y if and only if y = i or Ij IJ for 0 :::; j :::; k. Then L is a 
finite poset, denoted hy Lo. For any two elements x, y E L, define x :::; y if 
and only if y = (0, · · · 0) or IJ Ij for 0 :::; j :::; k. Then L is a finite poset, 
denoted by LR· 

For any two elements x, y E Lo, 

x 1\ y =(I[ n I'( ,If n I!f., · · · ,It n If), 

xVy = { 
(If' u I'( ,If u I!f., ···,It urn, if (Ij u IJ) n (Ij- u Tj,) = f/J(j =1 j'), 
i, otherwise. . 

Similarly, for any two elements x, y E LR, 

x v y = (I[ n I'(, I2 n I!f., .. · , I'k n IJ:J, 

x/\y = { (I[ U I'(, If u I!f., · · ·, I'k u I%), if (Ij u IJ) n (Ij, u IJ,) = f/J(j =J j'), 
i, otherwise. 

Therefore, both Lo and LR are finite lattices. 
Y. Huo, Y. Liu and Z. Wan ([3, 4, 5, 6, 7]) constructed lattices from 

orbits of suhspaces under finite classical groups. K. Wang and Y. Feng 
constructed lattices from orbits of flats under affine groups. K. Wang and 
Z. Li [11] constructed lattices from vector spaces over a finite field. In this 
paper, we construct two families of lattices from Hamming graphs, compute 
their characteristic polynomials and discuss their geometric properties. 

2 Preliminaries 

We recall some terminologies and definitions about finite posets and 
lattices. For more theory about finite posets and lattices, we would like to 
refer readers to [1, 9]. 

Let P he a poset with partial order :::;. As usual, we write a < b 
whenever a :::; b and a =f. b. For any two elements a, b E P, we say b covers 
a, denoted by a < · b, if a < b and there exists no any c E P such that 
a < c < b. Let P be a finite poset with the minimum element, denoted hy 
0. By a rank function on P, we mean a function r from P to the set of 
all the integers such that r(O) = 0 and r(a) = r(b) - 1 whenever a <·b. 
Observe the rank function of Pis unique if it exists. Let P he a finite poset 
with 0 and 1. The polynomial 

x(P, x) = L J.L(O, a)xr(l)-r(a) 

aEP 
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is called the characteristic polynomial of P, where r is the rank function of 
P. 

A poset L is said to be a lattice if both a V b :=sup{ a, b} and a 1\ b := 
inf{ a, b} exist for any two elements a, b E L. Let L be a finite lattice with 
0. By an atom of L, we mean an element of L covering 0. We say L is 
atomic if any element in L \ {0} is a union of atoms. A finite atomic lattice 
L is said to be a geometric lattice if L admits a rank function r satisfying 

r(a 1\ b)+ r(a V b) :::; r(a) + r(b), \fa, bE L. 

3 The lattice Lo 
The lattice La has the minimum element 6 = (0, 0, · · · , 0), and the 

maximum element i. The set of all the atoms of La is f1 1 . 

Theorem 3.1 The lattice La has the following properties: 

{i) La is a finite atomic lattice, that is every element of the lattice is a 
join of atoms. 

(ii) \fu,w E La such thatuVw =/= i::::} r(ul\w)+r(uVw) = r(u)+r(w). 

Proof. For any z E La, define 

( ) { n + 1, 
r z = II! I + 1121 + .. · + IIkl, 

if z = i, 
otherwise . 

Then r is the rank function of La. 
(i) i = ei V ei and an element z =/= i of the lattice is of the form 

so z = (ViEl' e}) V(ViEI' e;} v ... V(ViEF en is a join of atoms. 
1 2 k 

(ii) r(z) =II! I+ 1121 +···+lit I, so the formula is true because of the 
inclusion-exclusion formula of sets. 

Lemma 3.2 The Mobius function of La is 

{ 
(-1t(y)-r(x), 

p,(x, y) = -(1- k)n-r(x)' 

0, 
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if x :::; y =/= i or x = y = i, 
if X< y = l, 
otherwise. 



Proof. The Mobius function of Lo is 

We have 

and 

( -1 y(y)-r(x), 

- L: J.L(x, z), 
ifx:::; y =f. iorx = y = i, 
if X< y = l, 

x<Scz<y 
0, otherwise. 

- L; J.L(O, z) 
6<zd 

- -1)i 
-(1- k)n 

L: J.L(x,z) 
O#x<Scz<i 

_ kiCi (-1)i L...t=O n-r(x) 
-(1 _ k )n-r(x). 

Hence the desired result follows. 

Theorem 3.3 The characteristic polynomial of La is 

x(Lo, x) = -(1- kt + x(x- k)n. 

Proof. By Lemma 3.2, we obtain 

as desired. 

x(Lo, x) 
L; J.L(O, y)xn+l-r(y) 

0$y$i 
J.L(O, l) + L; J.L(O, y)xn+l-r(y) 

0$yd 
n 

-(1- k)n + L; 
i=O 

-(1- k)n + x(x- k)n, 

4 The lattice L R 

0 

0 

The lattice LR has the minimum element i, and the maximum element 
6 = (0, 0, · · · , 0). The set of all the atoms of LR is On. 

Theorem 4.1 The lattice LR has the following properties: 

(i) LR is a finite atomic lattice, that is every element of the lattice is a 
join of atoms. 
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(ii) 'Vu,w E LR such thatuVw -1-6 =? r(u!\w)+r(uVw) = r(u)+r(w). 

Proof For any z E LR, define 

{ 
n+ 1, 

r(z) = n + 1- (1111 + 1121 +···+lit I), 
0, 

Then r is the rank function of LR. 

if z = 6, 
otherwise, 
if z = i, 

(i) 6 = ei V ei and an element z -1- 6 of the lattice is of the form 

there are x, y EOn, 

iEl'! iEI'f iEIJ: 

iEJj' iElf 

with 
If =IfnI{, 12 =12 n ···, Ik =lk n I};, 

then z = x V y is a join of atoms. 
(ii) r(z) = n + 1- (I Ill+ 1121 +···+Ilk!), so the formula is true because 

of the inclusion-exclusion formula of sets. 

Lemma 4.2 The Mobius function of LR is 

{ 
(-l)r(x)-r(y), if! -j- x::; yorx = y = l, 

p,(x, y) = -(1- kr(y)-l, if 1 = x < y, 
0, otherwise. 

Proof The Mobius function of LR is 

We have 

(-1r(x)-r(y), 

- L p,(z,y), 

0, 

if i -1- x ::; y or x = y = i , 
if l =X< y, 

otherwise. 

- L p,(z,y) 

_ '\'r(y)-lkiCi (-1)i 
U2=0 r(y)-l 

-(1- kr(y)-1. 

Hence the desired result follows. 
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Theorem 4.3 The characteristic polynomial of LR is 

Proof. By Lemma 4.2, we obtain 

as desired. 

x(LR,x) 
L t.t(i, y)xn+l-r(y) 

i::;y::;6 
t.t(l, i)xn+l + L t.t(l, y)xn+l-r(y) 

n 
xn+l- L k)n-ixi 

i=O 
xn+l- (1- k + kx)n, 
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