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ABSTRACT. The hyper-star graph HS(n, k) is defined as follows : 

its vertex-set is the set of { 0, 1 }-sequences of length n with weight 

k, where the weight of a sequence v is the number of 1•s in v, and 

two vertices are adjacent if and only if one can be obtained from 

the other by exchanging the first symbol with a different symbol ( 1 

with 0, or 0 with 1 ) in another position. In this paper, we will find 

the automorphism groups of regular hyper-star and folded hyper-

star graphs. Then, we will show that, only the graphs H S( 4, 2) and 

FHS(4, 2) are Cayley graphs. 
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1. INTRODUCTION AND PRELIMINARIES 

An interconnection network can be represented as an undirected graph 

where a processor is represented as a vertex and a communication channel 

between processors as an edge between corresponding vertices. Measures of 

the desirable properties for interconnection networks include degree, con-

nectivity, scalability, diameter, fault tolerance, and symmetry [1]. For ex-

ample in [4, 6] have been found the symmetries of two important classes of 

graphs. The main aim of this paper is to study the symmetries of a class of 

graphs that are useful in some aspects for designing some interconnection 

networks. First major class of interconnection networks is the classical n-

cubes. Star graphs were introduced by [1] as a competitive model to the 

n-cubes. Both the n-cubes and Star graphs have been studied and many 
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of the properties are known and star graphs have proven to be superior 

to the n-cubes. The hyper-star graphs were introduced in [8] as compet-

itive model to both n-cubes and star graphs. Some of the structural and 

topological properties of hyper-star graphs have been studied in [3, 7]. For 

all the terminology and notation not defined here, we follow [2, 5, 10]. Let 

n > 2, the hyper-star graph HS(n, k) where, 1 k n- 1, is defined in 

[8] as follows : its vertex-set is the set of {0, 1 }-sequences of length n with 

weight k, where the weight of the sequence v is the number of 1•s in v, 

and two vertices are adjacent if and only if one can be obtained from the 

other by exchanging the first symbol with a different symbol ( 1 with 0 or 

0 with 1) in another position. Formally, if we denote by V(HS(n, k)) and 

E(HS(n, k)) the vertex-set and edge-set of HS(n, k) respectively, then 

V = V(HS(n,k)) = {xiX2 .. ·Xn I Xi E {0, 1},I:7=I Xj = k} 

E = E(HS(n,k)) = {{u,v} I u = XIX2 · ··Xn,V = XiX2 ·· ·Xi-IXIXi+I' · · 
Xn, XI = xi}, where xc is the complement of x (oc = 1 and 1 c = 0). It is 

clear that the degree of a vertex v of HS(n, k) is, n- kif 1 E v, or is kif 

1 rJ. v. So HS(n, k) is regular if and only if n = 2k. 

Let X = {1, 2, ... , n} and Xk be the family of subsets of X with k 

elements. Let S(n, k) be the graph with vertex-set Xk and two vertices 

v ={xi,··· , xk} and w = {YI, · · · , Yk} are adjacent if and only if I vnw I= 
k- 1 and, 1 belongs to one, and only one, of the vertices v and w, in other 

words w is obtained from v by replacing an element y E X- v with 1, if 

1 E v, and replacing x E v by 1 if, 1 rJ. v. Let A be a subset of X, then 

the characteristic function of A is the function XA : X ----> {0, 1} such that 

XA(x) = 1, if and only if x E A. Thus XA is a bijection between 

the family of subsets of X and the set of sequences of {0, 1} of length 

n. The graphs ri = (VI, EI) and f2 = (V2, E2) are called isomorphic, if 

there is a bijection a : VI ----> V2 such that, {a, b} E EI if and only if 

{a(a),a(b)} E E 2 for all a,b E VI. in such a case the bijection a is called 

an isomorphism. Now it is an easy task to show that the graphs HS(n, k) 

and S(n, k) are isomorphic, in fact the correspondence A XA is an 

isomorphism between S(n, k) and HS(n, k), and for this reason, from now 
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on, we work with S(n, k) and we denote it by HS(n, k). The following 

figure shows the graph HS(6, 3), where the set { x, y, z} is denoted by xyz. 

423 

326 

126 

56 
Fig. 1. HS(6,3) graph 
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An automorphism of a graph r is an isomorphism of r with itself. The 

set of all automorphisms of r, with the operation of composition of func-

tions, is a group, called the automorphism group of r and denoted by 

Aut(r). A permutation of a set is a bijection of it with itself. The group of 

all permutations of a set V is denoted by Sym(V), or just Sym(n) when 

I V I= n. A permutation group G on Vis a subgroup of Sym(V). In this 

case we say that G acts on V. If r is a graph with vertex-set V, then we 

can view each automorphism as a permutation of V, and so Aut(r) is a 

permutation group. Let G act on V, we say that G is transitive (or G acts 

transitively on V ) if there is just one orbit. This means that given any 

two elements u and v of V, there is an element (3 of G such that (3 ( u) = v. 

The graph r is called vertex transitive if Aut(r) acts transitively on 

V(r).The action of Aut(r) on V(r) induces an action on E(r) by the 

rule f3{x,y} = {f3(x), (3(y)},(3 E Aut(r), and r is called edge transitive if 

this action is transitive.The graph r is called symmetric, if for all vertices 

u, v, x, y, of r such that u and v are adjacent, and x and y are adjacent, 

there is an automorphism a such that a(u) = x, and, a(v) = y. It is clear 

that a symmetric graph is vertex transitive and edge transitive. 

For v E V(r) and G = Aut(r), the stabilizer subgroup Gv is the sub-

group of G containing all automorphisms which fix v. In the vertex transi-

tive case all stabilizer subgroups Gv are conjugate in G, and consequently 
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isomorphic, in this case, the index of Gv in G is given by the equation, 

IG: Gvl = = jV(r)l. If each stabilizer Gv is the identity group, then 
every element of G, except the identity, does not fix any vertex, and we say 

that G acts semiregularly on V. We say that G acts regularly on V if and 

only if G acts transitively and semiregularly on V and in this case we have 

IVI=IGI. 
Let G be any abstract finite group with identity 1, and suppose that n 

is a set of generators of G, with the properties : 

(i) X E f2 ==} x-l E 0; (ii)1 fj_ f2 ; 
The Cayley graph r = r(G,O) is the (simple) graph whose vertex-set 

and edge-set defined as follows : 

V(r) = G;E(r) = {{g,h} I g- 1h E 0}. It can be shown that a con-

nected graph r is a cayley graph if and only if Aut(r) contains a subgroup 

H, such that H acts regularly on V(r) [2, 5]. 

The group G is called a semidirect product of N by Q, denoted by 

G = N Q, if G contains subgroups Nand Q such that, (i)N::;! G (N is a 

normal subgroup of G ); (ii) NQ = G; (iii) N n Q = 1. 

2. MAIN RESULTS 

In the remaining of this section we assume that k is a fixed natural 

number, but arbitrarily chosen and k > 2 and X= {1,2, ... ,2k}. 

Lemma 2.1. The graph HS(2k, k) is a vertex transitive graph. 

Proof. In [8] it is proved that HS(2k, k) is a vertex transitive graph and 

in [3] it is proved that this graph is edge transitive, but for the sake of 

consistency and, since our proof is independent of those and we need our 

proof in the sequel, we bring a proof. Let V = V(HS(2k, k)). The graph 

HS(2k, k) is a regular bipartite graph of valency (regularity k ), in fact 

if P1 = { v E V I 1 E v} and P2 = { w E V I 1 fl. w} then, { P1, P2} 
is a partition of V and every edge of HS(2k, k) has a vertex in P 1 and 

a vertex in P2 and I P1 1=1 P2 I· Let a be a permutation of Sym(X) 
such that a fixes the element 1. a induces a permutation a on V by the 

rule a({x!,X2,""" ,xk}) = {a(xl),a(x2),··· ,a(xk)}. We have I vnw I= 
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I Ci( v) n Ci( w) I and 1 is in one, and only one of the vertices of an edge, 

thus a is an automorphism of the graph HS(2k, k). Note that if v E P 1 , 

then a(v) E P1, thus Ci(Pl) = P1 and Ci(P2) = P2. For any vertex v in 

V, let vc be the complement of the set v in X. We define the mapping 

() : V -----> V by the rule, ()(v) = vc, for every v in V. In fact () is an 

automorphism of HS(2k, k). Note that for any a in Sym(X) that fixes 

1 , a i= e. Now, let v, w E V. Suppose v, w E P1 and lv n wl = t. Let 

v = {1, x2, ... , Xt, Yl, ... , Yk-t} and w = {1, x2, ... , Xt, z1, ... , Zk-t}· We define 

the permutation 1T E Sym(X) by the rule; 1r(1) = 1, 1r(xi) =xi, 1r(y1) = ZJ, 
and 1r(u) = u, u EX- (v U w). Thus, if is an automorphism of HS(2k, k) 
and if(v) = w. If v,w E P 2 then, ()(v),()(w) E P 1 , therefore there is 

an automorphism if in Aut(HS(2k, k)) such that if(()(v)) = ()(w), thus 

(()- 1if())(v) = w. Now, let v E P1 and w E P2, thus ()(w) E P1 and there 

is an automorphism if E Aut(HS(2k, k)) such that if(v) = ()(w), then we 

have e- 1if(v) = w. 

0 

For a graph r and v E V (r), let N ( v) be the set of vertices w of r 
such that w is adjacent to v. If G = Aut(r), then Gv acts on N(v), if we 

restrict the domains of the permutations g E Gv to N(v) . It is an easy 

task to show that a vertex transitive graph r is symmetric, if and only if, 

Gv acts transitively on the set N(v) for any v E V(r). In the sequel () is 

the automorphism of HS(2k, k) which is defined in Lemma 2.1. 

Theorem 2.2. The graph HS(2k, k) is a symmetric graph. 

Proof. Let r = HS(2k, k) and G = Aut(HS(2k, k)). Since r is aver-

tex transitive graph, it is enough to show that Gv acts transitively on 

N(v) for any v E V = V(r). Let v E P1, v = {1,x2, ... ,xk}, thus 

N(v) = {{yi,x2, ... ,xk} 11:::; i:::; k}, where X= {1,x2, ... ,xk,Yl, ... ,yk}. If 
wi,WJ E N(v), wi = {yi,x2, ... ,xk}, w1 = {y1,x2 , ... ,xk}, then the trans-

position T = (YiYJ) E Sym(X) is such that i is in Gv and 7'(wi) = WJ· 
Now let v E P2 and u, w E N(v), thus ()(v) = vc E P1 and ()(u), ()(w) E 
N(()(v)) = N(vc). Therefore there is an automorphism 1T E Gvc such that 
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1r(O(u)) = O(v). Thus, (0- 11rO)(u) =wand since 1r(O(v)) = O(v), we have 
(0- 11rO)(v) = v. D 

Suppose r is a graph and G = Aut(r). For a vertex v of r, let Lv be 

the set of all elements g of Gv such that g fixes each element of N(v). Let 

Lvw = Lv n Lw. 

Lemma 2.3. Let r be a graph such that every vertex of it is of degree 

greater than one and G = Aut(r). lfv be a vertex ofr of degree b, and w be 

an element of N(v) with minimum degree m, then, I Gv 1:::; b!(m-1)!1Lvwl· 

Proof Let Y = N(v) and <P : Gv Sym(Y) be defined by the rule, 

<P(g) = gly for any element g in Gv , where gly is the restriction of g to 

Y. In fact <P is a group homomorphism and ker( <P) = Lv, thus Gv I Lv is 
isomorphic with a subgroup of Sym(Y). Since, I Y I= deg(v) = b, therefore 

I Gv I I I Lv I:::; b!. 

Now, I Gv 1:::; (b!) I Lv I· If w is an element of N(v) of degree l and 

g E Lv, then g fixes v E N(w). Let Z = N(w)-{v} and W: Lv Sym(Z) 

be defined by w(h) = h1z, for any element h in Lv. Then the kernel of the 

homomorphism W is Lvw and since I Z I= l-1, thus I Lv 1:::; (l-1)! I Lvw I· 

Now, we have I Gv 1:::; b!(l- 1)! I Lvw I· If w be an element in N(v) of 
minimum degree m, then the result follows. 

D 

From the previous Lemma it follows that, if r is a regular graph of 

degree m, then for every edge { v, w} of r we have I Gv I:::; m! ( m -1)! I Lvw I· 

Theorem 2.4. The automorphism group of HS(2k, k) is a semidirect 

product of N by Q, where N is isomorphic to Sym(2k- 1) and Q is iso-

morphic to z2, the cyclic group of order 2. 

Proof If H be the subgroup of Sym(X) that contains permutations which 

fix the element 1, then His isomorphic with Sym(2k -1). Then f: H 

Aut(HS(2k, k)) = G, defined by f(a) =a, (a is defined in Lemma 2.1) is 

an injection. In fact, if a# 1 be in Sym(X) and a(1) = 1, then there is an 

x EX such that a(x) :f. x. Now, letT beak-subset of X such that x E T 
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and a(x) ¢. T. Then a(T) =f. T and hence a =f. 1. It follows that the kernel 

of the homomorphism f is the identity group. Therefore, the subgroup 

f(H) = N = {a I a E H} is of order (2k-1 )!. If Q be the cyclic subgroup of 

G generated by() (0 is defined in Lemma 2.1), then I Q I= 2. Since, () ¢. N, 

soN n Q = 1, thus for the set NQ G we have I NQ I= = (2k-
1)!(2), so we have I G (2k- 1)!(2). If we show that I G 1::::; (2k- 1)!(2), 

then we must have G = N Q and since the index of N in N Q = G is 2, 

then N is a normal subgroup of G and the theorem will be proved. In the 

first step of the remaining proof, we assert that every 3-path in the graph 

r = HS(2k, k) determines a unique 6-cycle in this graph. Let p: VlV2V3V4 

be a 3-path in r. The path p has a form such as, vl = {Yl, X2, X3, ... xk}v2 = 
{1, X2, X3, ... , Xk}V3 = {y2, X2, X3, ... , Xk}V4 = {y2, 1, X3, ... , Xk}· If C be a 6-

cycle of r that contains P, then C has two adjacent vertices v5 and v6 such 

that vs is adjacent to v4 and V6 is adjacent to v1. Thus Vs has a form such 

as Vs = {y2, s, X3, ... , xk} where, s E {y1, y3, ... , Yk, xt} and v6 has a form 

such as v6 = {yl,X2, ... ,Xi-t,1,xi+l, ... ,xk}· Since vs and v6 are adjacent 

we must have Vs = {y2, Yl, x3, ... , xk} and v6 = {y1, 1, x3, ... , xk}· Now the 

assertion is proved. In the second step we show that if { v, w} be an edge 

of r, then Lv,w = 1. Let g E Lv,w and X be a vertex of r of distance 2 

from v. If x is adjacent to w, then g(x) = x. Let x is not adjacent to 

w, so there is a vertex y adjacent to v such that vyx is a 2-path of r. If 
C: xyvwtu be the unique 6-cycle that contains the 3-path xyvw, then g(C) 

is the 6-cycle g(x)yvwtg(u), soC and g(C) contain the 3-path yvwt, thus 

g(C) = C. Therefore 91V(C) is an automorphism of 6-cycle C that fixes 

the 2-path wvy, thus g fixes all vertex of this cycle and we have g(x) = x. 

Now, since the graph r is connected , it follows that g fixes all the vertices 

ofr, so g = 1 and Lv,w = 1. 

The graph r is vertex transitive, thus for a vertex v E V = V(r) we 

have; 

I G 1=1 vII Gv I::; c:)(k!)(k -1)! = -1)! = 2: 1 = (2k -1)!2 

D 
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Remark: As we can see in the proof of Theorem 2.4, the graph 

HS(2k, k) has 6-cycles and since this graph is bipartite , hence it has no 

3-cycles and no 5-cycles. It is easy to show that this graph has no 4-cycles, 

so the girth of this graph is 6. 

3. FOLDED HYPER-STAR GRAPHS 

The folded hyper star-graph F H S(2k, k) is the graph which its vertex-

set is identical to the vertex-set of hyper-star graph H S(2k, k), and with 

edge-set E2 = El u {{v,ve} I v E Vl}, where Eland vl are the edge-set 

and vertex-set of HS(2k, k) respectively. It is clear that this graph is a 

regular bipartite graph of degree k + 1. It is an easy task to show that the 

diameter of FHS(2k, k) is k, whereas the diameter of HS(2k, k) is 2k- 1 

[8]. We will show that this graph is also vertex transitive, thus its edge 

connectivity is maximum, say k+ 1 [11]. Let v be a vertex of FHS(2k, k). 

We can suppose that v = {1,x2, ... ,xk}, then N(v) = {{yi,x2, ... ,xk},1::::; 

i ::::; k} U {{y1 , ... , yk} }, where X = {1, x2, ... , Xk, Yl, ... , Yk}· Then for every 

w E N ( v) and w J=- ve, we is the unique vertex that is in N ( ve) and adjacent 

tow. Thus, if { v, w} be an edge of this graph and v J=- we, then the 4-cycle 

vwwevc is the unique 4-cycle that contains this edge, whereas if w = ve , 

then any 4-cycle vveueu, where u is adjacent to v, contains this edge. Let 

uwvve be a 3-path in F H S ( 2k, k) and u J=- we , then by a similar way that 

we have seen in the proof of Theorem 2.4 , we can show that the 6-cycle 

uwvvcweue is the unique 6-cycle that contains this 3-path. It is clear that 

the girth of this graph is 4. The following figure shows H S( 4, 2) graph and 

FHS(4,2) graph. 
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Theorem 3.1. The automorphism group of folded hyper-star graph FHS(2k, k) 

is identical to the automorphism group of hyper-star graph H S ( 2k, k). 

Proof. Let f 1 = HS(2k, k) , f 2 = FHS(2k, k) and H = NQ be the set 

which is defined in the proof of Theorem 2.4 . Let { v, w} = e be an edge 

of f 2 and h E NQ. If e be an edge of f 1, then h(e) is an edge of f2. If 
e is not an edge of f 1 , then w = vc. Let h = nq , n E N, q E Q, then 

we have h(e) = {h(v), h(vc)} = {nq(v), nq(vc)} = {n(v), n(vc}, now since, 

1 n(v) n n(vc) 1=1 v n vc I= o, then h(e) is an edge of the graph r2. It 
follows that H = NQ :::; Aut(f2). Then I Aut(f2) NQ I= (2k- 1)!2. 

Let G = Aut(f2 ). If { v, w} be an edge of r 2 such that w -=1- vc, then we 

will show that Lvw = 1. Let g E Lv,w· Let u be a vertex of f 2 of distance 

2 from the vertex v. Then there is a vertex t such that utv is a 2-path 

in the graph r 2. If t = vc' then the 4-cycle, c : uvcvuc is the unique 

4-cycle that contains the 2-path vcvuc. On the other hand, the 4-cycle 

g( C) = g( u )vcvuc also contains this 2-path, hence g( u) = u. Suppose that 

t -=1- vc, uc, then the path utvw is a 3-path in the subgraph f 1 = HS(2k, k), 

so there is a unique 6-cycle c: utvwrs in rl that contains this 3-path. c 
also is the unique 6-cycle in f 2 that contains the 3-path utvw. On the other 

hand, g(C) = g(u)g(t)g(v)g(w)g(r)g(s) = g(u)tvwrg(s), thus g(C) and C 

are 6-cycles that contains the 3-path tvwr, hence g(C) = C and 91V(C), the 

restriction of g to V (C), is an automorphism of the cycle C that fixes the 

vertices t, v, w, r, therefore g(u) = u. If u = tc, then C: vttcvc is the unique 

4-cycle that contains the 2-path vcvt and g(C) : vtgW)vc also contains this 

2-path, so g(C) = C, then g(u) = u. 

Since the graph f 2 is a connected graph, thus we can conclude that 

g(u) = u for any vertex u of f 2 , then Lv,w = 1. 

Let v be a vertex of f 2 , since this graph is a regular graph of degree 

k + 1, then from Lemma 2.3, it follows that I Gv 1:::; (k + 1)!k!. Now, We 

show that in fact, I Gv 1:::; (k -1)!k!. Let v be a vertex of r 2, wE N(v) and 

w -=1- vc. If g E Lv, then g fixes w, so g induces a permutation on N(w). 

Since, the 4-cycles C : wvvcwc and g( C) = wvvc g( we), are identical, then 
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g(we) = we. Therefore g fixes two elements v and we of N(w), hence 

Lv/ Lvw :::; Sym(k + 1 - 2), thus I Lv 1:::; (k - 1)!. Now, let h E Gv, 

then h induces a permutation on N(v), so h(ve) = w is in N(v). Let 

B = N(v) U N(ve)- {v,ve} and S[B] = T be the subgraph induced by 

B. It is clear that T is isomorphic to h(T), where h(T) is the subgraph 

induced by the set D = h(B) = N(v) U N(w)- {v,w}. We assert that if 
w =1- ve, then the sub graph induced by D has not any edge, whereas the 

subgraph induced by B has kedges. Suppose x,y ED and x E N(v) and 

y E N(w). We can assume that v = {l,x2 , ••. ,xk} and w = {yi,x2, ... ,xk}, 

then x = {yj, x2, ... , xk} andy= {yi, x2, ... X!-1, 1, X!+l. ... , Xk}, where i =1- j. 

Now, it is clear that {x,y} is not an edge of r 2 • Hence, h(ve) = w = ve. 

Now if Y = N(v) - {ve}, then hiY E Sym(Y), so Gv/Lv :::; Sym(k), 

therefore I Gv 1:::;1 Lv I (k!) :::; (k- l)!(k!). Since The graph r2 is a vertex 
transitive graph, thus; 

2k' 
I Aut(r2) I= I G 1=1 V(r2) II Gv I::; k!k.! (k!)(k- 1)! = (2k- 1)!2 

Now, we have Aut(FHS(2k, k)) = H = NQ = Aut(HS(2k, k)). 

D 

If k = 2, then HS(2k, k) is isomorphic to CB, the cycle on 6 vertices, 

hence Aut(HS(4, 2)) is D 12 , the dihedral group of order 12. If m be an 

odd number, then D4m = D2m z2. Therefore D12 = DB Z2, but 

Sym(3), hence Theorem 2.4 is also true fork= 2. But FHS(4, 2) is 

isomorphic to K3,3, the complete bipartite graph of degree 3, and Aut(K3,3) 

is a group of order 72 [2], thus Theorem 2.5 is not true for k = 2. 

The group G acting on a set n induces a natural action on the set 

n{m}' the set of m-element subsets of n, by the rule A9 = { al, ... , am}9 = 

{g(a1), ... ,g(am)}, where A 0 and g E G. The group G is called m-

homogenous, if its action on O{m} is transitive. We need the following 

fact. 

FACT [9]. Let G be a group acting on a set n, and 101 = n :2: 2m, 

m :2: 2. If G ism-homogenous, then it is also (m- !)-homogenous. 
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Theorem 3.2. Let k 2': 3. Ijr E {HS(2k, k), FHS(2k, k)}, then r is not 
a Cayley graph. 

Proof. We know that Aut(HS(2k, k)) = Aut(FHS(2k, k)), so if R is a 

subgroup of Aut(HS(2k, k)), then R acts regularly on V(HS(2k, k)) if and 

only if R acts regularly on V(FHS(2k, k)). Hence, it is enough to prove 

the theorem for HS(2k, k). Suppose the contrary, that HS(2k, k) is a 

Cayley graph, then Aut(HS(2k, k)) has a subgroup R that acts regularly on 

V(HS(2k, k)), then I R I= e:) = Ifr is an element of R, then r = o-ei, 
where a and B are defined in the proof of Theorem 2.4 and i E {0, 1}. 

Let M 1 = {a I a E R}, then M1 is a subgroup of R. Since R acts on 

V(HS(2k, k)) transitively, so R contains an element of the form aB. Now, 

if M2 ={O:BIO:B E R}, then M2aB M1, because O:BaB = 0:')'. Then, IM2I :S 

IM1I· Since M1aB M2, then IM1I :SI M2l, so IM1I = IM2I = (1/2)R. If 
M = {IT I a E Ml}, then I M1 1=1 M I and M is a subgroup of Sym(X) 
and every element of M fixes the element 1, where X = {1, 2, ... , 2k }. In 

fact M acts on Y = {2, ... , 2k} and is (k -I)-homogenous on this set. Since 

2(k-1) :::; 2k-1, then M is (k-2)-homogenous on Y. Hence we must have, 

I I M I= (1/2)(2;), therefore 2(2k- l!)k!k! I (2k!)(k- 2)!(k + 1)!, 

hence k(k- 1) I k(k + 1), so k- 1 I k + 1, thus we must have k E {1, 2, 3}. 

If k = 3, then I M I = 10. Since 2 I IM I, then there is an 

element IT in M such that the order of IT is 2. Note that IT is an element 

of Sym(6) that fixes 1. If we write IT in the form of a product of disjoint 

cycles, then IT= (rs) or IT= (rs)(tu), where r,s,t,u E {2,3, ... ,6}. In 

each of these cases, for a E Rand vertex v = {1, r, s} of HS(6, 3) we have 

a(v) = {IT(l),IT(r),IT(s)} = {l,r,s} = v. Thus R can not be a regular 

subgroup of Aut(HS(6,3)) which contradicts the assumption. 

D 

If k = 2, then HS(4, 2) is C6 , the cycle on 6 vertices, which is the 

Cayley graph r = r(Z6 , 0), where Z6 is the cyclic group of order 6 and 

n = {1,-1}. The graph FHS(4,2) is K3 ,3 , the complete bipartite graph 

of degree 3, which is the Cayley graph r = r(Sym(3), 0), where n = 

{(12), (23), (13)} [2]. 
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