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Abstract 

A set W V(G) is called a resolving set, if for each two distinct 
vertices u, v E V (G) there exists w E W such that d( u, w) =/=- d( v, w), 
where d(x, y) is the distance between the vertices x andy. A resolv-
ing set for G with minimum cardinality is called a metric basis. A 
graph with a unique metric basis is called a unique basis graph. In 
this paper, we study some properties of unique basis graphs. 
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1 Introduction 

Throughout the paper, G = (V, E) is a finite, simple, and connected graph of 

order n. The distance between two vertices u and v, denoted by d(u,v), is the 

length of a shortest path between u and v in G. For a vertex v E V(G), L(v) = 

{u I d(u,v) = i}. The diameter of G is diam(G) = max{d(u,v) I u,v E V(G)}. 

The girth of G is the length of a shortest cycle in G. The set of all vertices 

adjacent to a vertex v is denoted by N(v) and [N(v)[ is the degree of a vertex 

v, and is denoted by deg(v). The maximum degree and the minimum degree of 

a graph G, are denoted by .6.(G) and 8(G), respectively. The notations u v 

and u "" v denote the adjacency and non-adjacency relations between u and v, 

respectively. 
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For an ordered set W = { w1, w2, ... , wk} V(G) and a vertex v of G, the 

k-vector 

r(viW) = (d(v, w1), d(v, w2), ... , d(v, Wk)) 

is called the metric representation of v with respect to W. The set W is called 

a resolving set for G if distinct vertices have different metric representations. A 

resolving set for G with minimum cardinality is called a metric basis, and its 

cardinality is the metric dimension of G, denoted by (3(G). If (3(G) = k, then G 

is said to be k-dimensional. 

In [14], Slater introduced the idea of a resolving set and used a locating set 

and the location number for what we call a resolving set and the metric dimen-

sion, respectively. He described the usefulness of these concepts when working 

with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and 

Melter [7] discovered the concept of the location number as well and called it the 

metric dimension. For more results related to these concepts see [3, 4, 6, 11]. 

The concept of a resolving set has various applications in diverse areas including 

coin weighing problems [13], network discovery and verification [1], robot nav-

igation [11], mastermind game [3], problems of pattern recognition and image 

processing [12], and combinatorial search and optimization [13]. 

To determine whether a given set W is a resolving set, it is sufficient to 

consider the vertices in V (G)\ W, because w E W is the unique vertex in G for 

which d( w, w) = 0. When W is a resolving set for G, we say that W resolves 

G. In general, we say an ordered set W resolves a set T V(G), if for each two 

distinct vertices u,v E T, r(uiW) # r(viW). 

The following bound is a known upper bound for the metric dimension. 

Theorem A. [5] If G is a connected graph of order n and diameter d, then 

(3(G) :S n- d. 

In [9, 10], the properties of k-dimensional graphs in which every k subset 

of vertices is a metric basis are studied. Such graphs are called randomly k-

dimensional graphs. In the opposite point there are graphs which have a unique 

metric basis. 
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Definition. A graph is called a unique basis graph if it has a unique metric basis. 

A unique basis graph G with (3(G) = k is called a unique k-basis graph. 

In this paper, we first obtain some upper bounds for the metric dimension of 

unique basis graphs. Then, we give some construction for unique k-basis graphs 

of the given order. Finally, we obtain a lower bound and an upper bound for the 

minimum order of unique k-basis graphs in terms of k. 

2 Some upper bounds 

In this section we obtain some upper bounds for the metric dimension of unique 

basis graphs. 

Two vertices u, v E V(G) are called twin vertices if N(u) \ { v} = N(v) \ { u }. 

It is known that, if u and v are twin vertices, then every resolving set W for G 

contains at least one of the vertices u and v. Moreover, ifu tJ. W then (W\v)U{u} 

is also a resolving set for G. (8] 

For a unique basis graph we have the following fact. 

Lemma 1. If G is a unique basis graph, then G contains no twin vertices. 

Proof. Let B be the unique metric basis of G. If u, v E V(G) are twin vertices, 

then u, v E B; otherwise we can replace the one in B with the other one. Now, 

since B \ { u} is not a basis of G, there is exactly one vertex w E V (G) \ B such 

that r(uiB\ { u}) = r(wiB \ { u} ). Consequently, (B \ { u}) U { w} is a metric basis 

of G different from B, which is a contradiction. • 
Theorem 1. If G is a unique basis graph of order n and diameter d, then 

(3(G) n- d- 2. 

Proof. Let (vo,v1, ... ,vd) be a path of length d in G. Both sets V(G) \ 

{ v1, v2, ... , vd} and V(G) \ { vo, v1, ... , Vd-d are two resolving sets of G of size 

n - d. Hence, if G is a unique basis graph, then (3( G) n - d - 1. To complete 

the proof we show that (3(G) =/= n- d- 1. 

251 



Let f3(G) = n- d- 1 and for each i, 1 ::::; i ::::; d, f; = f;(vo). We claim 

that for each i, 1 ::::; i ::::; d, f; is an independent set or a clique; otherwise there 

exists an i for which f; contains vertices x, y, z such that x "' y and x ""' z. 

Therefore, V(G) \ {y, z, VI, v2, ... , Vi-I, Vi+ I, ... , Vd} is a metric basis of G. Now, 

if y ""' z, then V (G) \ { x, z, VI, v2, ... , Vi-I, v;+ 1, ... , Vd} is another metric basis 

and if y "' z, then V( G) \ { x, y, VI, v2, ... , Vi-I, Vi+I, ... , Vd} is another metric 

basis of G, contrary to the hypothesis. Consequently, for each i, 1 ::::; i::::; d, f; is 

an independent set or a clique. 

Now let for some i, 1 ::::; i ::::; d, If; I 2 2. Then, all vertices in f; are adjacent 

to all vertices in r i-I; otherwise there exist a E r i-I and X E r i such that a ""' X. 

Therefore, x has a neighbor in L-I, say b. Assume that y E f; and y # x. 

Clearly i 2 2. Thus, V(G) \{a, b,y,vi,V2, ... ,Vi-2,Vi+I, ... ,vd} is a metric basis 

of G. Now, if y"' a, then V(G) \ {b,x,y,vi,V2, ... ,Vi-2,Vi+I, ... ,vd} is another 

metric basis and if y""' b, then V(G) \ {a,x,y,vi,v2,···,vi-2,vi+I,···>vd} is 

another metric basis of G. These contradictions imply that y ""' a and y "' b. 

Hence, V(G) \ {a,b,x, VI, v2, ... ,vi-2,Vi+I, ... , vd} is a metric basis of G, which 

is also a contradiction. Consequently, all vertices in f; are adjacent to all vertices 

in ri-I· 

The above two facts imply that, if if;l 2 2 and IL+II 2 2, then all vertices in 

f; have the same neighbors in f;-I U f; U ri+I· Therefore, all vertices u, v E f; 

are twin vertices, which by Lemma 1 this is impossible. Thus, lf;l 2 2 implies 

that lfi+II = 1 and IL-II = 1. Hence, if lf;l > 2, then since ri+I = {v;+l}, by 

the Pigenhole principle there are two vertices u, v E f; with the same adjacency 

relation with Vi+I . Therefore, u and v are twin vertices, which is impossible. 

That is, for each i, 1 ::::; i ::::; d, I r i I ::::; 2. Now let j be the largest integer in 

{1, 2, ... , d} with ifi I = 2 and rj = { Vj, Yi }, where Yi is the vertex with no 

neighbor in ri+I· Therefore, the sets { vo, vd} and { vo, Yi} are two metric bases 

of G. This contradiction implies that f3(G) # n- d- 1. • 

Theorem 2. If G is a unique basis graph of order n and girth g, then f3(G) ::::; 

n-g+l. 

Proof. Suppose that C9 = (vi,v2, ... ,v9,vi) be a shortest cycle in G. Then 

V (G) \ { V3, V4, ... , v9 } and V (G) \ { v2, V3, ... , v9 _1} are two resolving sets for G 
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of size n - g + 2. Since G has a unique basis, neither of these two sets is a metric 

basis of G. Therefore, (3(G) ::::; n- g + 1. • 

Theorem 3. If G is a unique basis graph of order n, then (3(G) < 

Proof. Assume, to the contrary, that G has a unique metric basis B = { Vt, v2, ... 

, Vk} and n ::::; 2k. Since k ::::; n- 1, W = (V(G) \B) U { Vt, v2, ... , V2k-n} =/= B 

with jWj = k. Therefore, W is not a basis of G and there exist vertices 

x, y E V(G) \ W B such that r(xjW) = r(yjW). Say x = Vi and y = Vj. 

Hence, for each v E V(G) \ B, d(v,vi) = d(v,vi)· For this reason, B\ {vi} re-

solves V(G) \B. Therefore, there is exactly one vertex u E V(G) \ B such that 

r(ujB \{vi})= r(viiB \ {vi}). Consequently, (B \ {vi}) U {u} is a metric basis of 

G, which is a contradiction. Thus, 2(3(G) < n. • 
3 Construction of unique k-basis graphs 

In this section, we provide some construction for unique k-basis graphs of given 

order. Then we end by giving a lower bound and an upper bound for the minimum 

number of vertices in such graphs in terms of k. 

Remark 1. Note that, if G is a graph of diameter d, then every W V(G) can 

resolve at most diWI vertices of V(G) \ W. Hence, every k-dimensional graph of 

diameter d has at most k + dk vertices. 

In [2], Buczkowski eta!. constructed a unique k-basis graph with diameter 2 

and order k + 2k. 

Theorem B. [2] For k ;?: 2, there exists a unique k-basis graph of order n = 
k + 2k, diameter 2, and maximum degree n - 1. 

In the following theorem pertaining to construction of unique k-basis graphs 

with diameter d, we obtain two necessary conditions for the existence of k-

dimensional graphs with diameter d and order k + dk. 
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Theorem 4. If G is a k-dimensional graph with diameter d and order k + dk, 

then 

(i) d 3. 

(ii) For a basis Band every v E B, lfd(v)l2': dk- 1. 

Proof. (i) Let G be a k-dimensional graph of diameter d 2: 4 and order k + dk. 

Thus, V(G) = UUB, where U = {u1,u2, ... ,udk} and the ordered set B = 
{v1,v2, ... ,vk} is a basis of G. Clearly, {r(uiiB) 11 i dk} = [d)k, where 

[d]k denotes the set of all k-tuples with entries in {1, 2, ... , d}. Without loss 

of generality, suppose that r(u1IB) = (1, 1, ... , 1) and r(u2IB) = (4, 1, ... , 1). 

Therefore, d( v1, v2) 2 and d( u2, vt) d( u2, v2) + d( v2, vt) 3, a contradiction. 

Thus, d 3. 

( ii) Let B = { v1, v2, ... , Vk}. By the order and diameter of G, each k-vector with 

coordinates in { 1, 2, ... , d} is the metric representation of a vertex u E V (G) \ B 

with respect to B. Therefore, for each v E B, there are dk- 1 vertices of G for 

which the i-th coordinate of their metric representations is d. Thus, lfd(v)l 2: 
dk-1_ • 

In the following, we give a construction for unique k-basis graphs of diameter 

3 and order k + 3k. 

Theorem 5. For every integer k 2: 2, there exists a unique k-basis graph of 

diameter 3 and order k + 3k. 

Proof. Let G be a graph with vertex set U U W, where U = { u1, u2, ... , Uk} is 

an independent set and W is the set of all k-tuples with entries in {1, 2, 3} and two 

vertices x, y E W are adjacent if they are different in exactly one coordinate and 

this difference is 1. Moreover, the vertex (2, 2, ... , 2) is adjacent to all vertices in 

W. Also, wE W is adjacent to Ui E U if the i-th coordinate of w is 1. 

The vertex (2, 2, ... , 2) is adjacent to all vertices in Wand (1, 1, ... , 1) is adja-

cent to all vertices in U, thus diam(G) 3. On the other hand, d((3, 3, ... , 3), u 1 ) 

= 3. Therefore, diam( G) = 3. Since diam( G) = 3 and the order of G is k + 3k, 

by Remark 1, f3(G) 2': k. For each wE W, r(wiU) = w, thus, U is a resolving set 

for G of size k. Hence, U is a metric basis of G. 
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Now since diam((W)) = 2, for each wE W, lf1(w) u r 2(w)l ;::::: 3k- 1 and 

hence lf3(w)l :<::; k < 3k-l. Therefore, by Theorem 4(ii), no vertex of W is in a 

metric basis of G. Consequently, U is the unique metric basis of G. • 

By Theorems 1 and 3, if G is a unique k-basis graph of order n, then n ;::::: 

k + d + 2 and n ;::::: 2k + 1. Let 

no ( k) = min { n I there exists a unique k-basis graph of order n}. 

Hence, we have max{2k + 1, k + d + 2} :<::; no(k). 

The following theorem shows that if a unique k-basis graph of order no exists, 

then for every n;::::: no, a unique k-basis graph of order n exists. 

Theorem 6. If G is a unique k-basis graph of order no, then for every n;::::: no, 

there exists a unique k-basis graph of order n. 

Proof. Let G be a given unique k-basis graph of order no and let u be a vertex 

in the basis B. Assume that vo E V (G) \ B is a vertex such that d( vo, u) = 

max{d(v,u) I v E V(G) \ B}. We construct a graph G' by identifying an end 

vertex of a path P of length n- no by vo. By the property of v0 , B is also a 

resolving set for G'. Thus, (3( G') :<::; k. On the other hand, since every basis of 

G' contains at most one vertex of the path P, by replacing that vertex by v0 , we 

obtain a basis for G. Thus, G' is also a unique k-basis graph. • 

In the following theorem we give a recursive construction for unique basis 

graphs to obtain an upper bound for no( G). 

Theorem 7. If G;, i = 1, 2, is a unique k;-basis graph of order n; with ll(G;) = 
n; - 1, then there exists a unique (k1 + k2)-basis graph G of order n1 + n 2 - 1 

with ll(G) = n1 + n2- 2. 

Proof. Let G; be a unique k;-basis graph of order n; with the basis B; and 

v; E V(G;) such that deg(v;) = n;- 1, fori= 1, 2. Let G be the graph obtained 

from joining G1 and G2, and then identifying v1 and v2 in a vertex vo. Thus, 
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deg(vo) = n1 + n2- 2. Since for every u E V(G1) \{vi} and v E V(G2) \ {v2}, 

d(u, v) = 1, if E is a basis of G, then En V(G;) is a basis of G;, fori = 1, 2. 

Therefore, E is the unique basis of G. • 
Proposition 1. There exists a unique 3-basis graph of order 9 and maximum 

degree 8. 

Proof. Let U = {u1,u2,u3} and W = {w!,W2, ... ,w6}· Also let G be graph 

with V(G) = UuW and E(G) = {w;Wj 11::; i ¥ j::; 6}U{u;Wj 11::; i::; 3,j = 

i, i + 1, 6}. We show that U is the unique basis of G. 

Clearly, diam(G) = 2. Since IV(G)I = 9, by Remark 1, f3(G) 2 3. It is easy to 

see that U is resolving set and consequently is a basis of G. Now let E be another 

basis of G. Since (W) is a complete graph, E cf:. W. Therefore, IE n WI = 1 

or 2. If IE n WI = 1, then five vertices of W have the same representation with 

respect to E n W and since diam( G) = 2, E \ W can not resolve five vertices. If 

IE n WI = 2, then four vertices of W have the same representation with respect 

to En W and E \ W can not resolve 4 vertices. These contradictions imply that 

U is the unique basis of G. • 
In the following theorem, based on the recursive construction in Theorem 7, 

we obtain an upper bound for no(k). 

Theorem 8. For every k, k 2 2, there exists a unique k-basis graph of order 

rs; + 1l 

Proof. Let k be a positive integer. If k = 2k', then the graph G obtained by 

the recursive construction given in Theorm 7 using k' copies of the unique 2-basis 

graph of order 6, constructed in Theorem B is a unique k-basis graph of order 

6k' - ( k' - 1) = 5k' + 1 = s; + 1. 

If k = 2k' + 1, then the graph G obtained by the recursive construction 

given in Theorem 7 from k' - 1 copies of the unique 2-basis graph of order 6, 

constructed in Theorem B and one copy of the unique 3-basis graph of order 9 

given in Proposition 1, is a unique k-basis graph of order 6(k' -1)- (k'- 2) + 8 = 

sk' + 4 = f52k + 1l • 
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Although the above theorem provides the recursive construction for unique 

k-dimentional graphs of order r S2k + 11' to get the more explicit construction, we 

construct unique k-basis graphs of order 3k, in the following theorem. 

Theorem 9. For each k 2:: 2, there exists a unique k-basis graph of order 3k. 

Proof. Let U = { u1, u2, ... , uk} and W = { w1, w2, ... , W2k}. Also, let G be a 

graph with vertex set V(G) = U U W such that (i) the subgraph of G induced 

by W is a complete graph; (ii) U is an independent set; (iii) Uk is adjacent to 

w2; for each i, 1 i k; and (iv) u; is adjacent to W2i-1 and w2; for each i, 

1 i k - 1. We prove that G is the desired graph. 

Let w; and Wj be two arbitrary vertices of V(G) \ U = W. If i and j have 

different parity, then d(w;, uk) =1- d( Wj, uk)· If i and j have the same parity, then 

=1- and hence d(w;,u;) =1- d(wj,u;). Therefore, U is a resolving set for G 

of size k and (3( G) k. 

Now let B be a metric basis of G. If Uk ¢ B, then to resolve the set 

{u!,W!,W2,W2k-l,W2k}, B should contain at least three vertices from this set, 

since (W) is a complete graph. Now if we replace these three vertices by u1 

and Uk we obtain a resolving set with smaller size. This contradiction im-

plies that Uk E B. If for some i, 1 i k - 1, u; ¢ B, then to resolve 

the set { u;, W2i-1, w2;, W2k-1, w2k}, B should contain at least two vertices from 

{ W2i-1, W2;, W2k-1, w2k}, because (W) is a complete graph. But replacing these 

two vertices by u; provides a resolving set with smaller size. This contradiction 

implies that U <;::; B. Since U is a resolving set, U = B is the unique metric basis 

• 

By Theorems 3 and 8, we have the following corollary. 

Corollary 1. Let k 2:: 2 be an integer. Then 2k + 1 no(k) f5; + 11. 

For k = 2, n 2:: 4 + d implies n 2:: 6. Hence, no(2) = 6. It can be shown 

that, there is no unique 3-basis graph of order 7. Thus, 8 no(3) 9. The 

determination of no(k), for every integer k could be an nontrivial interesting 

problem. 
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