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Abstract 

Sparse anti-magic squares are useful in constructing vertex-magic 
labelings for bipartite graphs. Ann x n array based on {0, 1, · · · , nd} 
is called a sparse anti-magic square of order n with density d ( d < n), 
denoted by SAMS(n, d), if its row-sums, column-sums and two main 
diagonal sums constitute a set of 2n + 2 consecutive integers. A 
SAMS(n, d) is called regular if there are d positive entries in each 
row, each column and each main diagonal. In this paper, some con-
structions of regular sparse anti-magic squares are provided and it is 
shown that there exists a regular SAMS(n, n-1) if and only if n 2:: 4. 

Keywords: Magic square; Anti-magic square; Sparse; Regular; 
Vertex-magic labeling 

1 Introduction 

Magic squares and their various generalizations have been objects of 
interest for many centuries and in many cultures. A lot of work has been 
done on the constructions of magic squares, for more details, the interested 
reader may refer to [1-4] and the references therein. 

An anti-magic square of order n is ann x n array with entries consisting 
of n 2 consecutive nonnegative integers such that the row-sums, column-
sums and two main diagonal sums constitute a set of consecutive integers. 
Usually, the main diagonal from upper left to lower right is called the left 
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diagonal, the other is called the right diagonal. The existence of an anti-
magic square has been solved completely by Cormie et al (see [5, 6]). It 
was shown that there exists an anti-magic square of order n if and only if 
n 2:4. 

Sparse magic squares are a generalization of magic squares. For pos-
itive integers n,d (d < n), ann x n array based on 0,1, ... ,nd is called 
sparse magic square of order n with density d, denoted by SMS(n, d), if 
its row-sums, column-sums and two main diagonal sums is the same. A 
SMS(n, d) is called regular if there exist d non-zero elements in each row, 
each column and each main diagonal. The existence of a regular SMS(n, d) 
has been solved completely by Li and Su [7]. It was shown that there exists 
a regular SMS(n, d) if and only if d 2: 3 when n is odd and dis even, d 2: 4 
when n is even. 

Sparse anti-magic squares are a generalization of anti-magic squares. 
For positive integers n, d (d < n), let A be an n x n array with entries 
consisting of 0, 1, · · · , nd and let SA be the set of row-sums, column-sums 
and two main diagonal sums of A. Then A is called a sparse anti-magic 
square of order n with density d, denoted by SAMS(n, d), if SA consists 
of 2n + 2 consecutive integers. In [8], a SAMS(n, d) is also called a sparse 
totally anti-magic square. A SAMS(n, d) is called regular if all of its rows, 
columns and two main diagonal contain d positive entries. As an example, 
a regular SAMS( 4, 3) is listed below. 

1 
11 
6 
0 

3 
0 
8 
10 

It is readily checked that all elements of A consists of {0, 1, 2, · · · , 12}, 
SA= {16, 17, · · · , 24, 25} and all of its rows, columns and two main diagonal 
contain 3 positive entries. 

Sparse anti-magic squares are useful in graph theory. For example, 
they can be used to construct a vertex-magic total labeling for bipartite 
graphs, see [8] and the references therein. 

In this paper, we investigate the existence of a regular sparse anti-
magic square with maximum density (when d = n- 1). It is not difficult 
to see that there is no SAMS(n, n -1) for all n = 1, 2, 3. So to consider the 
existence of a regular SAMS(n, n -1), we need only to consider the case of 
n 2: 4. We shall prove the following. 

Theorem 1.1. There exists a regular SAMS(n, n -1) if and only ifn 2: 4. 

Some constructions of sparse anti-magic squares are given in Section 2. 
The existence of a regular SAMS( n, n -1) with n odd and even is considered 
in Section 3 and Section 4, respectively. 
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2 Constructions of sparse anti-magic squares 

In this section, we shall provide two constructions of sparse anti-magic 
squares based on quasi or pseudo sparse anti-magic squares. 

Let a, b be integers and let [a, b] be the set of integers v such that 
a :<:; v :<:; b. Let A be an array based on Z and let G(A) be the set of 
non-zero elements of A. 

For positive integers n and d even ( d < n), an n x n array A is called uni-
form regular sparse array of order n with density d, denoted by URSA( n, d), 
if G(A) = [-nd/2, -1] U [1, nd/2], there are d/2 positive entries and d/2 
negative entries in each row, each column and each main diagonals. 

A URSA( n, d), A, is called a quasi sparse anti-magic square, denoted 
by QSAMS(n, d), if SA= [-n, n + 1], where the sum of all elements in the 
left diagonal and the right diagonal is n + 1 and 0, respectively. 

A quasi sparse anti-magic square can be used to construct a regular 
sparse anti-magic square. We have the following. 

Construction 2.1. Let n, d be positive integer and d even. If there exists 
a QSAMS(n, d), then there exists a regular SAMS(n, d). 

Proof. Let A= (ai,j) be a QSAMS(n,d) and p = nd/2. Denote B = (bi,j), 
where 

{ 
ai,j + p, if ai,j > 0, 

bi,j = 0, if ai,j = 0, 
ai,j + p + 1, if ai,j < 0. 

Since G(A) = [-nd/2, -1] U [1, nd/2], we have G(B) = [1, nd]. On the 
other hand, there are d/2 positive entries and d/2 negative entries in each 
row, column and main diagonal of A. So there are d positive integers in 
each row, column and main diagonal of B. Note that SA = [-n, n + 1], 
from which it follows S B = [dp- n + d/2, dp + n + d/2 + 1]. Thus, B is the 
desired regular SAMS(n, d). D 

Let n,d be both even and B = (bi,j), 0 :<:; i,j :<:; n-1, be a URSA(n,d), 
then B is called a pseudo sparse anti-magic square, denoted by PSAMS( n, d), 
if the following properties hold: 
(i) Row-sums are all 0, column-sums are n/2 or -n/2, two main diagonal 
sums are both n/2 + 2. 
(ii) There exists an-setH= {jo,Jl, · · · ,Jn-d, such that bi,ji = 0, 0 :<:; i :<:; 
n -1; There exists exactly one i such that i = Ji, moreover, 2:: bs,ji > 

O:$s:$n-1 
0; Thereexistsexactlyonei' such thati'+Ji' = n-1, moreover, 2:: bs,ji' 

0:5s:5n-1 
> 0. 

A pseudo sparse anti-magic square can be used to construct a regular 
sparse anti-magic square of even order. We have the following. 

169 



Construction 2.2. Let n, d be both even. If there exists a PSAMS(n, d), 
then there exists a regular SAMS( n, d + 1). 

Proof. Suppose that B = (b;,1), 0:::; i,j:::; n-1, is a PSAMS(n,d) with the 
properties (i) and (ii) mentioned above. We can write H = H0 U H1 U H2, 
where 

Ho = {j;li = j; or i = n- 1- ji}, 

H1 = {j;l L bs,j, > 0}\Ho = {sklk = 0, 1, · · · , n/2- 3}, 
o::;s::;n-1 

H2 = {j;l L bs,j, < 0} = {tklk = 0, 1, · · · , n/2 -1}. 
o::;s::;n-1 

Let p = n(d+1)/2, u = p+n/2, v = p-n/2+1. Denote B' = where 

when j-/=- j;, 
I { bi,j + U, 

bi,j = 0, 
bi,j + v, 

if b;,j > 0, 
if b;,j = 0, 
if b;,j < 0. 

It can be shown that B' is a regular SAMS(n, d + 1). In fact, noting 
that B is a PSAMS(n, d), so there are d + 1 non-zero entries in each row, 
column and two main diagonals of B'. The set of non-zero elements of B' 
is that 

G(B') = [u+1, u+ndj2]U[v-ndj2, v-1]U[u-n/2+1, u]U[v, v+n/2-1] 
= [u- n/2 + 1, u + nd/2] U [v- nd/2, v + n/2- 1] 
= [p+ 1,2p] u [1,p] 
= [1, n(d + 1)]. 

Now we consider the sum set of B'. Let sh,, sz,, sd1 and sd2 be the i-th 
row sum, the i-th column sum, the left diagonal sum and the right diagonal 
sum. Then we have 
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i=O 
n-1 

U{sl,} 
i=O 

Thus, 

[(u + v)d/2 + v, (u + v)d/2 + u], 

[(u + v)d/2- n/2 + v, (u + v)d/2 + v- 1] 

U[(u + v)d/2 + u + 1, (u + v)d/2 + n/2 + u], 

{(u + v)d/2 + n/2 + u + 1, (u + v)d/2 + n/2 + u + 2}. 

n-1 n-1 2 

SB' = U {shJ U U {srJ U U{sdJ 
i=O i=O i=1 

= [(u + v)d/2- n/2 + v, (u + v)d/2 + n/2 + u + 2] 

= [(d + 1)p + d/2- n + 1, (d + 1)p + d/2 + n + 2]. 

So, B' is the desired regular SAMS(n, d + 1). 

To illustrate Construction 2.2, we give an example in the following. 

Example 1. There exists a regular SAMS(6, 5). 

Proof. Let 

( 

0 -3 -10 
-9 -6 0 
9 0 6 

B = 0 2 -4 
-1 0 11 
4 10 0 

8 
0 
-7 
7 

-11 
0 

5 
12 
-8 
0 
0 

-12 -2 

D 

It is readily checked that B is a PSAMS(6, 4) having the properties (i) and 
(ii) mentioned above, here, H = {0, 2, 5, 4, 1, 3}. We write 

where 

Ho = {0, 1}, H1 = {2}, H2 = {5, 4, 3} = {tklk = 0, 1, 2}. 

For n = 6 and d = 4, let p = n(d + 1)/2 = 15, u = p + n/2 = 18, 
v = p- n/2 + 1 = 13. 
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Denote B' = where 

if Ji = i, 

b'. = { 2,)-i 

18, 
17, 
16, 

if Ji = 5- i, 
if Ji E H1, 

13 + k, if Ji = tk E Hz, 

I { bi,j + 18, 
bi,j = 0, 

bi,j + 13, 

if bi,j > 0, 
if bi,j = 0, 
if bi,j < 0. 

Then we get 

(

18 

B' = 2J 
12 22 

It is readily checked that all elements of B' consists of [0, 30], Ss, = [72, 85] 
and all of its rows, columns and two main diagonal contain 5 positive entries. 
So, B' is a regular SAMS(6, 5). D 

The following is straight-forward but is useful in our recursive con-
struction for regular sparse anti-magic squares. 

Lemma 2.3. If there exist arrays Ak = k = 1, 2, · · · , m, with the 
following properties: 
(i) G(Ak) = [-xk, -1] U [1, xk], k = 1, 2, .. · , m. 
(ii) For each k, 1 :::;; k :::;; m, the number of positive integers is the same as 
that of negative integers in each row, each column and each main diagonal 
of Ak. 
Then there exist arrays B 1 , B 2 , · · · , Bm such that 

m m m 

(a) U G(Bk) = [- L Xk, -1] U [1, L xk]· 
k=l k=l k=l 

(b) For each k, 1 :::;; k :::;; m, the number of positive integers is the same as 
that of negative integers in each row, each column and each main diagonal 
of Bk, the sums of all elements in the corresponding rows (columns or main 
diagonals) of Bk and Ak are the same. 

k-1 
Proof. Let c1 = 0, Cz = x1, Ck = L Xs, k 

s=l 
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{1,2,··· ,m}, denote Bk = where 

{ 

(k) 0 (k) 
ai i + ck, if ai,j > 0, 

(k) ' 0 (k) b .. = 0 i" a .. = 0 
t,J ' :1 tiJ ' 

(k) 0 (11:) a .. -ck, if a .. < 0. t,J t,J 

Then it is readily checked that B1, B2 , • · · , Bm are the desired arrays. D 

3 Regular SAMS ( n, n - 1) with n odd 
In this section, we shall prove that there exists a regular SAMS( n, n-1) 

for all odd n ;:::: 5. By Construction 2.1, it suffices to show that there exists a 
QSAMS( n, n-1) for all odd n ;:::: 5. We start with some direct constructions 
of several small value n. 

Lemma 3.1. There exists a QSAMS(n, n -1) for all n E {5, 7, 9, 11}. 

Proof. For n = 5, let 

c 
-10 0 -2 

-1 10 -9 3 
B= 0 -3 9 

-5 2 0 -4 
1 7 -6 -7 

It is readily checked that B is the desired QSAMS(5, 4). 
For n = 7, let 

4 -20 -9 8 14 0 -4 
16 -2 2 -17 -12 9 0 
0 18 17 -5 5 -15 -14 

B= -21 -8 0 20 12 -7 7 
-1 1 -19 -10 0 21 10 
11 0 -3 3 -16 -13 13 

-11 15 19 0 -6 6 -18 

It is readily checked that B is the desired QSAMS(7, 6). 
For n = 9, let 

14 -33 -25 -11 19 0 27 -9 9 
-1 2 13 -34 -23 -12 29 35 0 
36 0 -2 4 12 -35 -21 -13 22 

-14 30 0 32 -3 5 11 -36 -18 
B= -28 -26 -15 31 0 21 -4 8 10 

1 18 -29 -24 -16 33 0 26 -5 
24 -6 3 17 -30 -22 -17 0 25 
0 20 28 -7 6 16 -31 -20 -19 

-27 -10 23 0 34 -8 7 15 -32 
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It is readily checked that B is the desired QSAMS(9, 8). 
For n = 11, let B be 

28 
6 

42 
44 

-23 
-55 
22 

-11 
0 

-17 
-39 

-54 
21 

-10 
36 

-22 
-34 
23 
11 
43 
0 

-24 

-35 
24 
10 
0 
38 

-25 
-53 
20 
-9 
49 

-21 

-26 
-52 
19 
-8 
0 

-20 
-36 
25 
9 

35 
50 

-19 
-37 
26 
8 
53 
0 

-27 
-51 
18 
-7 
47 

34 
-29 
-49 
16 
-5 
48 

-18 
-38 
27 
7 
0 

54 
-16 
-40 
29 
5 

45 
0 

-30 
-48 
15 
-4 

0 
55 

-31 
-47 
14 
-3 
40 

-15 
-41 
30 
4 

-2 
0 

-14 
-42 
31 
3 

52 
46 

-32 
-46 
13 

It is readily checked that B is the desired QSAMS(11, 10). 

2 
41 
0 

-33 
-45 
12 
-1 
37 

-13 
-43 
32 

17 
-6 
39 

-12 
-44 
33 
1 
0 

51 
-28 
-50 

0 

We shall take advantage of the quasi sparse anti-magic squares given 
in Lemma 3.1 to construct a QSAMS(n, n- 1) for all odd n 2:: 13. To do 
this, some arrays with special properties are needed. 

Lemma 3.2. There exists a URSA(9, 8), A= (aij), 0 ::::; i,j ::::; 8, having 
the property that a4,4 = 0 and 2:: ai,4 = 2:: a4,j = 0, the set of remain-

ing row-sums, column-sums is [-9, -2] U [2, 9] and there are four positive 
integers in the set of row-sums and the set of column-sums, respectively, 
the left diagonal sum is 8, the right diagonal sum is 0. 

Proof. Let 

A= 

-1 -8 
0 5 
1 4 

-3 0 
8 -6 

-24 23 
-26 25 
26 -23 
24 -25 

0 6 
3 -2 

-9 0 
-5 9 
2 -4 

-19 20 
-21 22 
19 -20 
21 -22 

10 17 12 
-10 -17 -12 
-7 -13 -16 
7 13 16 
0 36 -35 
34 -31 0 
33 -30 32 

-33 0 -28 
-34 29 28 

It is readily checked that A is the desired array. 

-18 -11 
14 11 
18 15 

-14 -15 
-36 35 
31 -32 

-29 0 
30 27 
0 -27 

0 

For even m and even n, an m x n array T is called near-uniform if 
G(T) = [-mn/2, -1]U[1, mn/2], there are n/2 positive entries and n/2 neg-
ative entries in each row, there are m/2 positive entries and m/2 negative 
entries in each column. 

Lemma 3.3. For all positive integer t 2:: 2, there exists an 8 x 2t near-
uniform array with the property that column-sums are all 0 and row-sums 
are 2t or -2t. 
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Proof. (i) For t = 2s, s 2: 1, let 

-1- 16i -2- 16i 3 + 16i 4 + 16i 
1 + 16i 2 + 16i -3 - 16i -4- 16i 
5+16i 6+16i -7-16i -8-16i 

-5 - 16i -6 - 16i 7 + 16i 8 + 16i 
Ci= -9-16i -10-16i 11+16i 12+16i 

-13- 16i -14- 16i 15 + 16i 16 + 16i 
9 + 16i 10 + 16i -11- 16i -12- 16i 

13 + 16i 14 + 16i -15- 16i -16- 16i 
0 i s- 1. Then C = (C0 , C1, · · · , C8 _ 1 ) is the required array. 

(ii) For t = 2s + 1, let 

Cj = 

-1 2 -3 -4 5 7 
1 -2 3 4 -5 -7 
6 8 -9 -10 11 -12 

-6 -8 9 10 -11 12 
q = -13 14 -15 -16 17 19 

-18 -20 21 22 -23 24 
13 -14 15 16 -17 -19 
18 20 -21 -22 23 -24 

-9 -16j -10 -16j 11 + 16j 12 + 16j 
9 + 16j 10 + 16j -11-16j -12 -16j 
13 + 16j 14 + 16j -15 -16j -16 -16j 

-13 -16j -14 -16j 15 + 16j 16 + 16j 
-17 -16j -18 -16j 19 + 16j 20 + 16j 
-21-16j -22 -16j 23 + 16j 24 + 16j 
17 + 16j 18 + 16j -19 -16j -20 -16j 
21 + 16j 22 + 16j -23 -16j -24 -16j 

1 j s- 1. When s = 1, C0 is the required 8 x 6 array. When s 2: 2, 
C = (C0 q · · · C8 _ 1 ) is the required 8 x 2t array. 0 

Lemma 3.4. There exists a QSAMS(n, n -1) for all odd n 2: 5. 

Proof For each odd n 2: 5, we can write n = 8k+w, where w E {5, 7, 9, 11 }, 
k 2: 0. 

When k = 0, n = w, the desired QSAMS(n, n -1) is given by Lemma 
3.1. 

Suppose that k 2: 0 and B is a QSAMS(n, n- 1), where n = 8k + w. 
We shall show that there exists a QSAMS(n + 8, n + 7). 

Let A be a URSA(9, 8) having the property mentioned in Lemma 3.2. 
Let C be an 8 x (n -1) near-uniform array having the property mentioned 
in Lemma 3.3. Let D be the transpose of C. If necessary, we can perform 
row permutations to C and independently perform column permutations 
to D so that the signs of corresponding row (column) sums match, i.e., 

L ai,J L Ci,j > 0, 0 i 3, 
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L ai+1,j L ci,j > 0, 4 ::; i ::; 7, 

2..::: ai,j 2..::: di,j > o, o :::: j :::: 3, 

and 
2..::: ai,j+1 2..::: di,j > o, 4:::: j:::: 7. 

Clearly, 
G(A) = [-36, -1] u [1, 36], 

G(B) = [-n(n- 1)/2, -1] U [1, n(n- 1)/2], 

G(C) = G(D) = [-4(n- 1), -1] u [1, 4(n -1)] 

and the number of positive integers is the same as that of negative integers 
in each row, column of A, B, C and D, respectively. By Lemma 2.3, there 
exist four arrays A' = B' = C' = and D' = such 
that 

G(A') u G(B') u G(C') u G(D') 
= [-n(n- 1)/2- 8(n- 1)- 36, -1] U [1, n(n- 1)/2 + 8(n- 1) + 36] 

= [-(n + 8)(n + 7)/2, -1] U [1, (n + 8)(n + 7)/2]. 

and the number of positive integers is the same as that of negative integers 
in each row, column of A', B', C' and D', respectively. Meanwhile, the 
number of positive integers is the same as that of negative integers in each 
main diagonal of A' and B', and the central entry 4 = 0. 

We write A', C' and D' in the following forms: ' 

where Aj, are 5 x 5, 5 x 4, 4 x 5, 4 x 4 subarrays of A', Cl and C2 
are 4 x ( n - 1) subarrays of C', and are ( n - 1) x 4 subarrays of D'. 

Construct an (n + 8) x (n + 8) array E = (ei,j) as follows. 

A' 1 I C' 1 A' 2 

I 
D' 1 B' D' 2 

A3 l C2 A4 

where e4,4 = bb,o· It is not difficult to check that E is the desired QSAMS(n+ 
8, n + 7). 
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In fact, G(E) = G(A') u G(B') u G(C') u G(D') = [-(n + 8)(n + 
7)/2, (n + 8)(n + 7)/2]. 

Let sh,, s1,, sd, and sd2 be the i-th row sum, the i-th column sum, the 
left diagonal sum and the right diagonal sum of E, respectively. We have 

3 n+7 

U{sh,,si;}U U {sh1 ,s1J 
i=O j=n+4 

n+3 

U {sh,, s1,} 
i=4 

[-9- n + 1,-2- n + 1] U [2 + n- 1, 9 

+n-1] 
[-n- 8, -n- 1] U [n + 1, n + 8], 

[-n, -1] U [1, n]. 

Noting that the left diagonal sums of A and B are 8 and n + 1, 
respectively, the right diagonal sums of A and B are both 0, we have 
sd, = (n + 1) + 8 = n + 9, Sd2 = 0 + 0 = 0. Then 

n+7 

Se = U {sh,,s1J U {sd,, Sd2 } = [-n- 8,n + 9] 
i=O 

and there are 8n + 7 integers in each row, each column and each main 
diagonal, where the left diagonal sum is n + 9, the right diagonal sum is 0. 
Thus, E is the desired QSAMS(n + 8, n + 7). D 

Theorem 3.5. There exists a regular SAMS(n, n- 1) for all odd n 5. 

Proof. Combining Lemma 3.4 and Construction 2.1 gives the proof. D 

4 Regular SAMS ( n, n - 1) with n even 
In this section, we shall prove that for all even n 4, there exists a 

regular SAMS( n, n- 1). For n = 4, the desired regular SAMS( 4, 3) is given 
in Section 1. For even n 6, to construct a regular SAMS(n, n- 1), by 
Construction 2.2, it suffices to show that there exists a PSAMS(n, n- 2). 
We start with some direct constructions of several small value n. 

Lemma 4.1. There exists a PSAMS(n, n- 2) for all n E {6, 8, 10, 12}. 

Proof. For n = 6, the desired PSAMS(6, 4) is given in Example 1. 
For n = 8, let 
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12 0 20 23 -23 -20 0 -12 
0 -11 -24 -18 18 24 11 0 
0 15 -10 -13 13 10 -15 0 

B= -16 0 14 9 -9 -14 0 16 
3 -4 -21 0 0 21 -3 4 
6 -5 0 -19 19 0 -6 5 

-7 8 17 0 0 -17 7 -8 
-2 1 0 22 -22 0 2 -1 

It is readily checked that B is a PSAMS(8, 6). Here, H = {1, 0, 7, 6, 3, 5, 4, 2}. 
For n = 10, let 

0 10 3 -26 20 -20 26 -12 -1 0 
6 11 0 18 21 -21 -19 0 -11 -5 

-7 0 -6 -18 27 -28 19 12 1 0 
-29 -33 37 13 0 0 -13 -37 33 29 

B= 30 34 -38 0 -14 14 0 38 -34 -30 
-31 -35 39 0 15 -15 0 -39 35 31 
32 36 -40 -16 0 0 16 40 -36 -32 
0 -8 9 17 -22 28 -24 -2 0 2 
7 0 -9 24 -25 25 -23 5 0 -4 

-3 -10 0 -17 -27 22 23 0 8 4 

It is readily checked that B is a PSAMS(10, 8). Here, H = {0, 2, 9, 4, 3, 6, 5, 
8, 1, 7}. 

For n = 12, let B be 

18 0 57 -60 -46 36 -36 46 60 -57 0 -18 
0 -17 -51 54 40 -30 30 -40 -54 51 17 0 
0 23 -16 59 45 -35 35 -45 -59 16 -23 0 

-24 0 -56 15 -39 29 -29 39 -15 56 0 24 
25 48 0 -53 14 34 -34 -14 53 0 -48 -25 

-31 -42 50 0 44 -13 13 -44 0 -50 42 31 
-26 -47 -55 -58 -38 0 0 38 58 55 47 26 
32 41 49 52 0 19 -19 0 -52 -49 -41 -32 
3 -4 22 12 -20 0 0 20 -12 -22 -3 4 
8 -7 -11 -21 0 27 -27 0 21 11 -8 7 
-9 10 5 0 -43 -33 33 43 0 -5 9 -10 
-2 1 0 -6 37 -28 28 -37 6 0 2 -1 

It is readily checked that B is a PSAMS(12, 10). Here, H = {1, 0, 11, 10, 2, 3, 
5, 7, 6, 4, 8, 9}. 

0 

We shall show that there exists a PSAMS(n, n- 2) for all even n 2:: 14 
by means of some special arrays. 

Lemma 4.2. There exists an 8 x 8 array A = ( ai,j) having the following 
properties: 
(i) G(A) = [-24, -1] u [1, 24]. 
(ii) There are 3 positive entries and 3 negative entries in each row, column 
and there are 4 positive entries and 4 negative entries in each main diagonal. 
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(iii) Row-sums are all 0, column-sums are 4 or -4, two main diagonal sums 
are both 4. 
(iv) There exists a setH= {jo,j1 , · · · ,h }, such that ai,j; = 0, 0 i 7. 

Proof. Let 

A= 

-1 0 
0 2 
17 21 

-18 -22 
-19 -23 
20 24 
0 -6 
5 0 

1 13 -13 -9 
-10 -14 14 10 
-3 0 0 3 
0 4 -4 0 
0 -8 8 0 
7 0 0 -7 

-11 -15 15 11 
12 16 -16 -12 

0 9 
-2 0 
-21 -17 
22 18 
23 19 

-24 -20 
6 0 
0 -5 

It is readily checked that A is the desired array. Here, H = {1, 0, 3, 2, 5, 4, 7, 
6}. D 

Lemma 4.3. For all positive integer t 2, there exists an 8 x 2t near-
uniform array having the property that row-sums are all 0 and column-sums 
are 4 or -4. 

Proof. Let 

-1 1 -1-8 1+8 -1-By 1 +By 
2 -2 2+8 -2-8 2+8y -2-By 

-3 3 -3-8 3+8 -3-8y 3+8y 

C= 
4 -4 4+8 -4-8 4+8y -4-By 

-5 5 -5-8 5+8 -5 -By 5+8y 
6 -6 6+8 -6-8 6+8y -6-By 
-7 7 -7-8 7+8 -7-8y 7+8y 
8 -8 8+8 -8-8 8+8y -8-By 

where y = t - 1. Then C is the desired array. D 

Lemma 4.4. For all positive integer t 2, there exists a 2t x 8 near-
uniform array having the property that row-sums are all 0 and column-sums 
are t or -t. 

Proof. Let D be 

-1 1 -1- 2t 1 + 2t 1 +4t -1-4t 1 +6t -1- 6t 
2 -2 2+2t -2- 2t -2- 4t 2+4t -2-6t 2+6t 

-3 3 -3- 2t 3 + 2t 3 + 4t -3 -4t 3+6t -3- 6t 
4 -4 4+2t -4- 2t -4- 4t 4+4t -4-6t 4+6t 

-2t+ 1 2t- 1 -4t+ 1 4t -1 6t -1 -6t+ 1 8t- 1 -8t+ 1 
2t -2t 4t -4t -6t 6t -8t 8t 

It is readily checked that D is the desired array. D 
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Lemma 4.5. There exists a PSAMS(n, n- 2) for all even n 2: 6. 

Proof. For each even n 2: 6, we can write n = 8k + w, where w E 
{6, 8, 10, 12}, k 2: 0. 

When k = 0, n = w, the desired PSAMS(n, n- 2) is given by Lemma 
4.1. 

When k 2: 1, let Am= A= (ai,j), 1:::; m:::; k, where A is the same as 
in Lemma 4.2. Let B = (bi,j) be a PSAMS(w, w- 2) coming from Lemma 
4.1. For 1 :::; m :::; k, let tm = w/2 + 4(m- 1) and Cm = be an 
8 x 2tm near-uniform array with the property mentioned in Lemma 4.3. If 
necessary, we can do some column permutations to Cm so that 
when m = 1, 

2:: bi,j 2:: > o, o ::::: j ::::: w - 1, 
O:'Oi:'Ow-1 O:S:i:'07 

when m 2: 2, 

L ai,j L > 0, 0 :::; j :::; 3 and 0 :::; u :::; m - 2. 
O:'Oi::;7 0:'0i:S:7 

L bi,j L > 0, 0 :::; j :::; w- 1, 
O:S:i:'Ow-1 0:'0i:'07 

L ai,j L > 0, 4 :::; j :::; 7 and m - 1 :::; u :::; 2m - 3, 
0:'0i:'07 O:'Oi:'07 

Let Dm = be a 2tm x 8 near-uniform array with the property men-
tioned in Lemma 4.4. If necessary, we can do some column permutations 
to Dm so that 

Clearly, 
G(Am) = [-24, -1] U [1, 24], G(B) = [-w(w- 2)/2, -1] U [1, w(w-

2)/2], 
G(Cm) = G(Dm) = [-8tm, -1] U [1, 8tm] = [-(4w + 32(m -1)), -1] U 

[1, 4w + 32(m- 1)]. 
By Lemma 2.3, there exist arrays A:n, B', c:n and D:n, 1 :::; m:::; k, 

such that 
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k k k 

( U U G(B') u ( U G(C:rJ) u ( U 
m=1 m=1 m=1 

= [-24k- w(w- 2)/2- 2(16k2 - 16k + 4kw), -1] U [1, 24k + w(w- 2)/2 

+ 2(16k2 - 16k + 4kw)] 

= [-(8k + w)(8k + w- 2)/2, -1] U [1, (8k + w)(8k + w- 2)/2] 
= [-n(n- 2)/2, -1] U [1, n(n- 2)/2], 

the number of positive integers is same as that of negative integers in each 
row, each column and each main diagonal of and B', respectively, the 
number of positive integers is same as that of negative integers in each row, 
each column of c;,_ and respectively. The sums of all elements in the 
same row (column) of Am and B and B', Cm and c;,_, Dm and 
are the same, respectively. 

Let (a::J")) and B' = by the property of A and B, there 

exists a set {j0 ,j1 , · · · ,j7}, such that at;:)= 0, 0:::; i:::; 7, and there exists 
a set .. · ,j:V_ 1 }, such that = 0, 0 :::; i :::; w- 1, there exists 
exactly one i such that i = ji and 2::::: bs,j; > 0, there exists exactly 

O:<:;s:<:;n-1 
one i' such that i' + j:, = w - 1 and 2::::: bt,j,, > 0. 

o:<:;t:<:;w-1 
We write c:n_ and in the following forms: 

A' = ( Am,1 
m Am,3 

Am,2 ) , c:, = ( Cm,1 ) , 
Am,4 Cm,2 

Dm' = ( D m,1 Dm,2 ) , 

where 1 :::; m:::; k, Am,1, Am,2, Am,3 and Am,4 are 4 X 4 sub-arrays of 
Cm,1 and Cm,2 are 4 X 2tm sub-arrays of c;,_, Dm,1 and Dm,2 are 2tm X 4 
sub-arrays of 

Construct ann x n array E = (er,t) below. 

Ak,l ck,l Ak,2 

A3,1 C3,1 A3,2 

A2,1 C2,1 A2,2 

A1,1 C1,1 A1,2 

Dk,l ... D3,1 D2,1 D1,1 B D1,2 D2,2 D3,2 . .. Dk,2 

A1,3 C1,2 A1,4 

A2,3 C2,2 A2,4 

A3,3 C3,2 A3,4 

Ak,3 Ck,l Ak,4 
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It is not difficult to check that E is a PSAMS(n, n- 2). In fact, by the 
properties of B', c:, and D:,, it is easy to see that there are (n- 2)/2 
positive entries and ( n- 2) /2 negative entries in each row, column and each 
main diagonal of E, respectively. The set of non-zero elements of E is 

k k k 

G(E) = ( U u G(B') U ( U G(C:r,)) u ( U 
m=1 m=1 m=1 

= [-n(n- 2)/2, -1] U [1, n(n- 2)/2] 

Row-sums of E are all 0, column-sums of E are w /2 + 4k = n/2 or -w /2-
4k = -n/2. Note that two main diagonal sums of A are both 4 and two 
main diagonal sums of B are both w /2 + 2, so two main diagonal sums of 
E are both 4k + w /2 + 2 = n/2 + 2. 

By the property of B' and the construction of E, there exists a 
setH= {t0 , t 1 , · · · , tn-d, such that sr,tr = 0, 0::; r::; n- 1, there exists 
exactly one r such that r = tr and L:; el,tr > 0, there exists exactly 

o:::;!:::;n-1 
one r' such that r' + tr' = n - 1 and "' e t > 0. LJ v, r' 

o:::;v:::;n-1 

Thus, E is the desired PSAMS(n, n- 2). D 

Theorem 4.6. There exists a regular SAMS(n, n- 1) for all even n;:::: 4. 

Proof. A regular SAMS( 4, 3) is given in Section 1. For even n ;:::: 6, the 
corresponding regular SAMS(n, n -1) is obtained by Lemma 4.5 and Con-
struction 2.2. D 

The proof of Theorem 1.1 Just combining Theorem 3.5 and Theorem 
4.6, the proof is obtained. 
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