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Abstract 

For a vertex v of a graph G, the unlabeled subgraph G- v 
is called a card of G. We prove that the number of isolated vertices 
and the number of components of an n vertex graph G can be 
determined from any collection of n- 2 of its cards for n 2: 10. It 
is also proved that if two graphs of order n 2: 6 have n - 2 cards 
in common, then the number of edges in them differ by at most one. 

Key words: vertex-deleted subgraph (card), common cards, reconstruction. 

1 Introduction 

All graphs considered are finite, simple and undirected. We use the 
terminology in Harary [2]. The degree of a vertex v and the minimum 
degree among the vertices of a graph G are denoted by degc ( v) (or simply 
deg v) and o(G) (or simply 8 ), respectively. The number of edges of G is 
denoted by e(G). The set of all neighbours of a vertex v of G is denoted 
by N(v). By u '""v, we mean the vertices u and v are adjacent; otherwise 
we denote u cf v. 
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For a vertex v of G, the unlabeled subgraph G- v is called a card 
of G. A graph G on n 2:: 3 vertices is reconstructible if there is no graph 
H not isomorphic to G with n cards in common with G. The famous 
Reconstruction Conjecture claims that all graphs on three or more vertices 
are reconstructible. Manvel [3] proved that, if G and H are graphs on n 
vertices with n- 1 cards in common, then le(G)- e(H)I ::; 1. Myrvold 
[5] showed that for n 2': 7, e(G) = e(H) whenever G and H have n -1 
cards in common. For 3 ::; n ::; 5, there are graph pairs G and H on n 
vertices with n- 2 cards in common such that le(G)- e(H)I = 2. But 
for n 2': 6, it was proved [6] that if two graphs G and H on n vertices 
and 8 2': 2 have n- 2 cards in common, then le(G)- e(H)I::; 1. 

In this paper, we prove that the number of isolated vertices and the 
number of components of G are reconstructible from any collection of n-2 
of its cards for n 2:: 10. It is also proved that, if G and H are graphs on 
n 2:: 6 vertices with n- 2 cards in common, then le(G)- e(H)I ::; 1. 

2 Reconstruction from n - 2 cards 

Here we prove that the number of isolated vertices of G (denoted 
by no(G)) and the number of components of G (denoted by w(G)) are 
reconstructible from any collection of n - 2 of its cards. 
We first recall the following two lemmas. 

Lemma 1 ([6]). Connected graphs and disconnected graphs on n ( 2:: 7) 
vertices are recognizable from any collection of n - 2 of their cards. 

Lemma 2 ([6]). A graph with an isolated vertex can be recognized from 
any collection of n- 2 of its cards for n 2:: 7. 

Theorem 3. The number of isolated vertices in a graph G of order n is 
reconstructible from any collection of n- 2 of its cards for n 2:: 10. 

Proof. In view of Lemmas 1 and 2, we can take that G is disconnected 
with isolated vertices. Let .§: be the given collection of n- 2 cards of G. 

If either .§: contains a card with no isolated vertices, or at least 
three cards in .§: have exactly one isolated vertex, then n0 (G) = 1 (since 
a graph with at least two isolated vertices have exactly two cards with ex-
actly one isolated vertex). We assume, therefore, that every card in .§: has 
isolated vertex, and that at most two cards in .§: have exactly one isolated 
vertex. 
Case 1. There is a card in .§: with exactly one isolated vertex. 
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Then n0 (G) = 1 or 2. Let us characterize G when it has exactly 
one isolated vertex. 

Since all but at most three cards of G have at least two isolated ver-
tices, G must have at least n - 3 vertices adjacent to a vertex of degree 
one and hence, at least n- 3 vertices of degree one. Also G can have at 
most one component on three or more vertices (since each such component 
of G gives rise to at least 2 cards of G with exactly one isolated vertex). 
Among the other components of G, one is K 1 and the remaining are K2 's. 

If G has no components on three or more vertices, then it is ( n2l )K2U 
K 1 , leading to a contradiction (since § contains a card with exactly one 
isolated vertex). 

T 0 0 I 0 0 0 I 0 0 

F1 Fz F3 

0 0 0 o---<>---o----0 0 0 0 0 0 

F4 Fs F6 

o--<1\)----o--.oo 
F1o 

Figure 1: Possibilities for the sole non K2 component of G 

If G has a component which is a tree, and that tree has four or more 
endvertices, then there would be at least four cards with exactly one iso-
lated vertex (which is not the case here). So any components which are 
trees have at most three endvertices. If the tree has three endvertices, then 
it has one vertex v of degree three. If v is not adjacent to some endver-
tex, then the graph again has at least four cards with exactly one isolated 
vertex (those obtained from deleting v and the three endvertices). Thus 
the degree three vertex v is adjacent to an endvertex. If there is a path 
of length three or more from v to one of the other endvertices which has 
first edge vu, the four cards obtained from deleting the three endvertices 
or u have exactly one isolated vertex. Thus, if G has a component which 
is a tree having three end vertices, this component must be one of F1 , F2 
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and F3 of Figure 1. 
If G has a component which is a tree having only two end vertices (the 

only remaining case for trees) then it is a path. Any path on six or more 
vertices has at least four cards which have exactly one isolated vertex. So 
such a component is one of F4, F5 and F6 of Figure 1. 

The remaining cases are when G has a component on three or more 
vertices which has a cycle. Such a cycle can have size at most three. The 
reason is that either a cycle vertex v is adjacent to an endvertex or it is 
not. If the vertex v is adjacent to an endvertex u, then G- u has ex-
actly one isolated vertex. If it is not, then G - v has exactly one isolated 
vertex. Similar reasoning can be used to argue that the component only 
has one cycle. Let the cycle be (a, b, c). These vertices may or may not be 
adjacent to an endvertex. But either way, there can be no other vertices 
besides a, b, c, and at most one endvertex adjacent to each which are in 
this component or else there will be four or more cards with exactly one 
isolated vertex. The possible cases are F7 , F8 , F9 or F10 of Figure 1. 

Thus when G has exactly one isolated vertex, it has to be one among 
the ten graphs F1 U (n25)KzUK1, FzU(n26)KzUK1, F3u(n27)Kz UK1, 
F4u(n24)KzUK1, F5u(n25)KzUK1, F6u(n26)KzUK1, F7u(n24)KzU 
K1, Fs U (n25)Kz U K1, Fg u (n26)K2 U K1, and Fw u (n27)K2 U K1. 
Hence if § coincides with some collection of n - 2 cards of one of these 
ten graphs, then n0 (G) = 1. Otherwise, n0 (G) = 2. 
Case 2. Each card in § has at least two isolated vertices. 

If at least four cards in § have exactly two isolated vertices, then 
no(G) = 2. Hence we can take that at most three cards in § have ex-
actly two isolated vertices. Then no (G) 2 (as otherwise G has exactly 
one isolated vertex (say x ). Since § contains a card with at least three 
isolated vertices, G has a component (say C) on three or more vertices. 
Then at least three cards of G, obtained from deleting x or the non-cut 
vertices of C, have at most one isolated vertex, contradicting Case 2). 
Subcase 2.1. If there exists a card in § with exactly two isolated ver-
tices. 

Then no (G) = 2 or 3. It can be proved similarly (as in Case 1) 
that when G has exactly two isolated vertices, it has to be one among the 
ten graphs F1 U (n26)Kz U 2K1, Fz U (n27)K2 U 2K1, F3 U (n28 )Kz U 
2Kl, F4 U (n25)K2 U 2Kl, F5 U (n26)Kz U 2K1, F6 U (n27)K2 U 2K1, 
F1 u (n25)Kz U 2K1, Fs U (n26)Kz U 2K1, Fg U (n27)K2 u 2K1, and 
F10 U (n28 )K2 U 2K1. Hence, if § coincides with some collection of n- 2 
cards of one these ten graphs, then n0 (G) = 2. Otherwise, no( G) = 3. 
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Subcase 2.2. Each card in .ff has at least three isolated vertices. 
If there exists a card in .ff with at least four isolated vertices, then 

n0 (G) ;:::: 3 (as otherwise G has exactly two isolated vertices (say x, y ). 
Since .ff contains a card with at least four isolated vertices, G has a 
component (say C) on three or more vertices. Then at least four cards of 
G, obtained from deleting x or y or the non-cut vertices of C, have at 
most two isolated vertices, contradicting Subcase 2.2). Therefore at least 
one card of G obtained from deleting an isolated vertex must belong to 
.ff and hence n 0 (G) = min {no (F)} + 1. We assume, therefore, that each 

FEff 
card in .ff has exactly three isolated vertices. Then n 0 (G) = 2 or 3. 

Let us characterize G when it has exactly two isolated vertices. Since 
all but at most two cards of G have exactly three isolated vertices, it fol-
lows that G must have at least n - 2 endvertices adjacent to distinct 
vertices, and hence G ';;::! (n2 2 )K2 U 2K1 • Thus, if .ff coincides with some 
collection of n- 2 cards of (n22 )K2 U 2K1 , then n0 (G) = 2. Otherwise, 

• 

Theorem 4. The number of components of G of order n (;:::: 10) is re-
constructible from any collection of n - 2 of its cards. 

Proof. In view of Lemma 1, we can take that G is disconnected. Let 
'7f? be the given collection of n - 2 cards of G. We consider four cases 
depending on n 0 (G) (this value can be determined from 3)). 
Case 1. n0 (G) > 2. 

Then '7f? must contain a card obtained by deleting an isolated ver-
tex of G , and such a card can be identified in '7f? as a card G - v with 
no(G- v) = n 0 (G)- 1. Hence w(G) = w(G- v) + 1. 
Case 2. no(G) = 2. 

If contains a card, say F with exactly one isolated vertex, then 
F must be obtained from deleting an isolated vertex of G, which implies 
w(G) = w(F) + 1. Hence, we can take that each card in '7f? has at least 
two isolated vertices. Consequently, '7f? does not contain the two cards ob-
tained by deleting the isolated vertices of G. Then, the collection of cards 
obtained by deleting exactly two isolated vertices from every card in '7f? 
must be the full deck of the graph H = G - 2K1 . But it is well known 
that the number of components can be determined from the full deck of a 
graph. Thus w(H) and hence w(G) can be determined. 
Case 3. no(G) = 1. 
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We can take that each card in has at least one isolated vertex (as 
otherwise w(G) = min{w(F)} + 1 ). does not contain the card 

FE<&' 
obtained by deleting the unique isolated vertex of G. So, the collection f7 
of n - 2 cards obtained by deleting exactly one isolated vertex from every 
card in is nothing but the collection of all but one card of the graph 
H = G - K 1 . Since every component of H is nontrivial and contains 
at least two non-cutvertices of H, it follows that f7 must contain a card 
obtained by deleting a non-cutvertex of H. Thus, w(H) = min { w(E)} 

EE$ 
and w(G) = w(H) + 1. 
Case 4. n0 (G) = 0. 

Since G is disconnected and containing no isolated vertices, it con-
tains at least four non-cutvertices and hence w(G) = min{w(F)}. • 

FE<&' 

3 Graphs with n - 2 cards in common 

Whenever G and H are taken as two graphs having n - 2 cards 
in common, we assume that G and H are labeled with v1 , v 2 , ... , Vn and 
ul, u2, ... , Un respectively so that G - Vi H - ui for i = 1 to n - 2. 
A card G- vi, 1 :::; i :::; n- 2 is called a common card of G and a card 
H- ui, 1 :::; i:::; n- 2 is called a common card of H. 

We recall the following two lemmas. Since the proof of Lemma 5 is 
very short, we include it. 

Lemma 5 ([5]). Let G and H be graphs with e(G) and e(G)+k, k 0 
edges respectively. If G- v H- u, then deg u = deg v + k. 
Proof. Since G - v H - u, it follows that e( G - v) = e( H - u), which 
implies e(G)- deg v = e(G) + k- deg u and hence deg u = deg v + k. • 

Lemma 6 ([6]). Let G and H be graphs on n vertices with e(G) and 
e( G) + k, k 0 edges respectively. If G and H have n - 2 cards in 
common, then deg Vn-l + deg Vn- (deg Un-l + deg un) = k(n- 4). • 
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2 1 I 2 I 

' 

3 6 3 6 

G H G H 

Figure 2: Two Pairs of graphs on eight vertices with six common cards. 

Theorem 7. If G and H are graphs on n ;:::: 6 vertices such that they 
have n- 2 cards in common, then le(G)- e(H)I 1. 

Proof. Rivshin and Radziszowski [7] reported that 

(i) for n = 6, 7, there exist pairs of nonisomorphic graphs G and H 
with n- 2 cards in common (but for which le(G)- e(H)I 1 ), 

(ii) for n = 8, there exist only two pairs of nonisomorphic graphs G and 
H with six common cards (Figure 2) (but for which le(G)- e(H)I = 
1 ), and 

(iii) for n = 9, 10, 11, there exists no pairs of nonisomorphic graphs with 
n - 2 common cards. 

Let G and H be two graphs on n ;:::: 12 vertices with n - 2 com-
mon cards. Without loss of generality, let us take e(G) e(H). Since 
0 degc vi, degH ui n- 1, it follows that degc vi - degH Uj n- 1. 
Therefore 

degc Vn-1 +degc Vn- (degH Un-1 +degH un) 2(n-1) ....... (1) 
If possible, suppose e(H)- e(G);:::: 3. Then by Lemma 6, we have 

degc Vn-1 + degc Vn- (degH Un-1 + degH un) ;:::: 3(n- 4), which implies 
from (1) that 
2(n- 1);:::: 3(n- 4). This is impossible as n;:::: 12. 

Ifpossible, let e(H)-e(G) = 2. Then byLemma5, we have degH ui = 
degc vi+ 2 and hence degH ui ;:::: 2 for i = 1 to n- 2. . ..... (2) 
Now by Lemma 6, 
degc Vn-1 + degc Vn- (degH Un-1 + degH un) = 2n- 8. . ..... (3) 
Since 0 degc vi n- 1 and 0 degH ui n- 1 for i = 1 to 
n, it follows that degc Vn-1 + degc Vn 2n- 2 and degH Un-1 + 
degH Un ;:::: 0 and (3) gives rise to the seven cases discussed below, each 
leading to a contradiction. We assume, without loss of generality, that 
degc Vn ;:::: degc Vn-1, and degH Un ;:::: degH Un-1· 
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Case 1. dega Vn-1 + dega Vn = 2n- 2 and degH Un-1 + degH Un = 6. 
Then dega Vn-1 = dega Vn = n- 1 and {degH Un-1, degH un} = 

{0,6},{1,5},{2,4}, or {3}. If {degH Un-1,degH un}-=/= {3}, then there 
must be a common card of H containing a vertex of degree 0 or 1. 
But no common card of G contains such a vertex (since dega Vn-1 = 
dega Vn = n-1 ), giving a contradiction. So, we can take that degH Un-1 = 
degH Un = 3, and that IN(un-1) n N(un)l = 3 (as otherwise, there must 
be at least one common card of H containing at most one (n- 2) -vertex. 
But, since dega Vn_ 1 = dega Vn = n- 1, it follows that each common 
card of G has at least two (n- 2) -vertices, producing a contradiction). 
Let N(un-1) n N(un) = { Ur, u., ut}. 

Now each common card G- Vi (1 :::; i :::; n - 2) has at least two 
adjacent (n- 2) -vertices, namely Vn-1, Vn. Consequently, each H- Ui 
(1 :::; i :::; n- 2) has at least two adjacent (n- 2) -vertices. But the only 
vertices that can have degree at least n - 2 in H are Ur, Us and Ut. As 
a result, degH ui = n- 1, for i E {r, s, t}. Hence each of the n- 5 (?:: 6) 
common cards H- ui (and hence G- vi), i {r, s, t, n -1, n} has three 
( n- 2) -vertices. As a result, G has a vertex, say Vk ( k -=/= n -1, n) of de-
gree at least n-2. Let Vq be the non-neighbour of vk. Then Vq -=/= Vn_ 1, Vn 
and hence each of the n - 3 common cards G - vi ( 1 :::; i :::; n - 2 and 
i -=/= k) has at most one 2 -vertex. Thus, at most one common card of G 
can have at least two vertices of degree two. This is impossible (since each 
of the three common cards H- ur, H- Us and H-Ut have at least two 
vertices of degree two). 
Case 2. dega Vn-1 + degH Vn = 2n- 3 and degH Un-1 + degH Un = 5. 

Now dega Vn = n-1 and dega Vn-1 = n-2. Hence in G, there can 
be at most one vertex which is not adjacent to Vn_ 1 and this alone can be 
endvertex of G. Thus, G has at most one endvertex and no isolated vertex. 

Since degH Un-1 +degH Un = 5, it follows that {degH Un-1, degH un} 
= {0, 5}, {1, 4}, or {2, 3}. If degH Un-1 = 0 or 1, then there must be 
a common card of H containing a 0 -vertex. But no common card of 
G contains such a vertex (since dega Vn- 1 = n- 1 ), giving a contradic-
tion. We assume, therefore, that {degH Un_ 1, degH un} = {2, 3}, and that 
IN(un) n N(un-1)1 = 2 (as otherwise, there must be at least one common 
card of H containing no (n- 2) -vertex. But every common card of G 
has at least one (n- 2) -vertex, again contradicting). 

Let Ua E N(un) \ N(un-1) and Ub, Uc E N(un) n N(un-1); let Vs 
be the nonneighbour of Vn_ 1 in G. Then each of the n - 3 common 
cards G - Vi (and hence H - ui ) ( 1 :::; i :::; n - 2 and i -=/= s ) has an 
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(n- 2) -vertex and an (n- 3) -vertex. The remaining card G- Vs (and 
hence H- Us) has two adjacent (n- 2) -vertices. As a result, H must 
have a vertex of degree at least n- 2. However vertices in H that can 
have degree at least n- 2 are ua, Ub, and Uc only. If Ub and Uc have 
degree at most n- 2 in H, then there exists a common card of H with 
no (n - 2) -vertex, contradicting. If one of ub and Uc, say ub has de-
gree n - 1 and Uc has degree at most n - 2, then the common card 
H- Ua has no (n- 2) -vertex, again contradicting. We take, therefore, 
that degH Ub = degH Uc = n - 1. Since Ua "' Un-b degH Ua n - 2. If 
degH Ua < n- 2, then the common cards H-Ub and H- Uc have no 
(n- 3) -vertex. Consequently, at most n- 5 common cards of H have 
(n- 3) -vertex, giving a contradiction. Hence, let degH Ua = n- 2. Then 
exactly two common cards of H (namely H-Ub and H- Uc) have an 
endvertex adjacent to an (n- 2) -vertex. But at most one or at least n- 3 
common cards of G may have this property, again contradicting. 
Case 3. dega Vn-1 + dega Vn = 2n- 4 and degH Un-1 + degH Un = 4. 

Then {dega Vn-bdega vn} = {n -1,n- 3} or {n- 2}. 
Subcase 3.1. {dega Vn-1,dega vn} = {n- 1, n- 3}. 

Now dega Vn = n -1 and dega Vn-1 = n- 3. Then G has at most 
two endvertices and no isolated vertex. Since degH Un-1 +degH Un = 4, it 
follows that {degH Un-1, degH un} E {{0, 4}, {1, 3}, {2}}. If {degH Un-1, 
degH un} =/= {2} or IN(un) n N(un-1)1 =/= 2, then H has a common 
card with no (n- 2) -vertex. But each common card of G has at least one 
(n-2) -vertex (since dega Vn = n-1 ), giving a contradiction. We assume, 
therefore, that {degH Un-bdegH un} = {2} and IN(un)nN(un-1)1 = 2. 

Let N(un) n N(un-d = {ur,us}· Then every common card of G 
(and hence H) has at least one (n- 2) -vertex. On the otherhand, since 
degH Un-1 = degH Un = 2, it follows that the only vertices in H that 
can have degree at least n- 2 in H are Ur and Us. As the result, we 
have degH ui = n-1, i E {r, s }. Thus, H has exactly two common cards 
(namely H- Ur and H- Us) with at least two endvertices adjacent to an 
(n- 2) -vertex. But at most one or at least n- 4 (?: 7) common card of 
G may have such a property, giving a contradiction. 
Subcase 3.2. {dega Vn-1,dega vn} = {n- 2}. 

Then in G, there can be at most one vertex which is adjacent neither 
to Vn nor to Vn_ 1 and that vertex alone can be isolated vertex of G. On 
the other hand, G has at least n- 4 vertices which are adjacent to Vn and 
Vn_ 1. Hence other than Vn and Vn_ 1, there can be at most two vertices in 
G which are nonadjacent to at least one among Vn-1 and Vn, and these 
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alone can be endvertices of G. 
Thus, G has at most one isolated vertex and at most two endvertices . .. (5) 

If Vn f Vn-1, then vertices Vn and Vn-1 are adjacent to every other 
vertices of G and hence no common card of G has a vertex of degree 0 or 
1. Since degH Un- 1 + degH Un = 4, it follows that at least one common 
card of H has an isolated vertex or endvertex, giving a contradiction. So 
we assume that Vn ,....., Vn_ 1 . Then there must be a vertex in G, say Vt 
which is nonadjacent to Vn-1 or Vn. Consequently, 
the common card G- Vt has an (n- 2) -vertex. .. .... (6) 
We also assume that N(un) n N(un- 1) #- ¢ (as otherwise, no common 
card of H has an (n- 2) -vertex, contradicting (6) ). 
Then { degH un, degH Un-d E { {3, 1 }, {2}} and so we have two subcases. 
Subcase 3.2.1. {degH Un, degH Un-d = {3, 1}. 

Since N(un)nN(un-d #- ¢, it follows that Un f Un-1· As degH ui 2: 
2 ( 1 ::; i :S n- 2 ), the vertex un_ 1 is the only endvertex in H; the vertex 
Us denotes the neighbour of Un-1· The common card H- Us has exactly 
one isolated vertex. Each of the other n - 3 common cards H - ui (and 
hence G- vi), i E {1, 2, ... , n- 2}- { s} has the following two properties. 
( i) has no isolated vertex 
( ii) has at least one end vertex. .. .... (7) 

As a result, G has an endvertex, say adjacent to Vs and so 
vi f for i E { s, n- 1, n }. Thus, degc = 1, degc Vs 2: 3 (because 
Vs ,....., Vn-1 #- and Vs ,....., Vn -=1- ), and degc vi 2: 2 for all other vertices 
vi of G. Hence the common card G- has no end vertex. Thus, at most 
n- 4 common cards of G may have endvertices, contradicting (7). 
Subcase 3.2.2. {degH Un-1, degH un} = {2}. 

If Un ,....., un_1, then each common card of H has at most one vertex 
of degree at least n-3. Since degc Vn = degc Vn_ 1 = n-2, it follows that 
every common card of G has at least two vertices of degree at least n- 3, 
giving a contradiction. We assume, therefore, that Un f Un-1· Then, since 
N(un) n N(un-d #- ¢, it follows that IN(un) n N(un-1)1 = 1 or 2. If 
IN ( Un) n N ( Un-1) I = 2, then each common card of H has two end vertices 
adjacent to the same vertex. Consequently, each common card of G has 
two endvertices adjacent to the same vertex, which is a contradiction to 
degc Vn-1 = degc Vn = n- 2. Hence, let IN(un-1) n N(un)l = 1. 

Since dega Vn = degc Vn-1 = n- 2 and Vn ,....., Vn-1, we have (i) 
IN(vn)nN(vn-1)1 = n-4, or (ii) IN(vn)nN(vn-1)1 = n-3. If (i) holds, 
then there is a vertex, say Vo: not adjacent to Vn_ 1 and Vn, and hence the 
common card G- Va (and hence H- Ua) contains two (n- 2) -vertices, 
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contradicting the fact that IN(un_I)nN(un)l = 1. So we assume that (ii) 
holds; let Va, Vf3 denote the vertices not adjacent to Vn-1 and Vn, respec-
tively. Then Va and Vf3 are the only vertices that can be endvertices in a 
common card of G. Let ub E N(un) n N(un-1), Ua E N(un) \ N(un_l), 
and u8 E N(un_ 1) \ N(un)· Since H-Ub ( G- Vb) has exactly two 
endvertices, it follows that the two endvertices in G - Vb must be Va and 
Vf3. Consequently, the vertices Ua and Us have degree at least n- 3 in 
H - ub and hence they have degree at least n - 3 in H. Hence exactly 
three common cards of H (namely H- Ua, H-ub, H- Us) have end-
vertices. But at least n - 4 7) (this happens when Va or Vf3 is an 
endvertex of G) or at most two (this happens when G has no endvertices) 
common cards of G may have endvertices, producing a contradiction. 
Case 4. dega Vn-1 + dega Vn = 2n- 5 and degH Un-1 + degH Un = 3. 

Now {dega Vn-1, dega Vn} = {n- 4, n -1} or {n- 3, n- 2}, and if 
the former holds, then every common card of G has at least one (n- 2)-
vertex. But H does not have this property, contradicting. Hence, let 
dega Vn = n- 2 and dega Vn-1 = n- 3. 

If Vn f Vn-1 or IN(vn) U N(vn-1)1 = n, then clearly no com-
mon card of G has a component isomorphic to K 1 or K 2 . But H 
has a common card with a component isomorphic to K 1 or K 2 (Fig-
ure 3), giving a contradiction. Otherwise, IN(vn-1) U N(vn)l = n -1. Let 
Vs rjc N(vn) UN(vn_I) and Vt E N(vn) \N(vn-1)· Then the common card 
G- V 8 (and hence H- Us) has the following two properties. 
(i) has an (n - 2) -vertex, namely Vn (and so G- V8 has no isolated 
vertex) 
(ii) has at most one endvertex (the vertex nonadjacent to Vn_ 1 ). 
Also the common card G-vt contains two (n-3) -vertices which are adja-
cent, and no end vertex of G- Vt is adjacent to these two ( n- 3) -vertices. 
Since degH Un + degH Un-1 = 3, the graph H must be one of the four 
types shown in Figure 3. If H is Type 4, then no common card of H is 
isomorphic to G- Vt. Otherwise, no common card of H is isomorphic to 
G- Vs. This completes Case 4. 
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Type I Type2 Type3 Type4 

Figure 3: Structure of H in Case 4, Theorem 3. 

Case 5. degc Vn-1 +degc Vn = 2n-6 and degH Un-1 +degH Un = 2. 
Then {degc Vn-1, degc vn} = {n-5, n-1}, {n-4, n-2}, or {n-3}. 

If degc Vn- 1 = n- 5 and degc Vn = n -1, then every common card of G 
has at least one (n-2) -vertex. But H must have a common card with no 
(n-2) -vertex (Figure 4), contradicting. Next, let {degc Vn_ 1, degc vn} = 
{n- 2, n- 4}. If Vn f Vn-1 or IN(vn) U N(vn-dl = n, then no com-
mon card of G has a component isomorphic to K 1 or K 2 . But H must 
have a common card with a component isomorphic to K 1 or K 2 (Fig-
ure 4), again contradicting. Otherwise IN(vn) U N(vn- 1 )1 = n- 1. Let 
Vt E N(vn) \ N(vn_ 1). Then each of the n- 3 common cards G- Vi 
( 1 :::; i :::; n - 2 and i #- t ) of G has at most one isolated vertex, and 
the common card G- Vt has an (n- 2) -vertex (namely Vn) and has no 
isolated vertex. . ..... (12) 

Type I Type2 Type3 Type4 

Figure 4: Structure of H in Case 5, Theorem 4. 

Since degH Un + degH Un-1 = 2, the graph H is one of the four types 
shown in Figure 4. If H is Type 4, then the common card H - ur has 
exactly two isolated vertices, contradicting (12). If H is not Type 4, then 
no common card of H has an (n- 2) -vertex, again contradicting (12). 
The only remaining case that { degc Vn, degc Vn-1} = { n- 3} is proved to 
be impossible in Case 1 of Theorem 6 in [6] (where the proof dealt with E 
and F instead of G and H respectively and it does not used the vertices 
of degree at least n- 2 ). This completes Case 5. 
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Case 6. dego Vn-1 + dego Vn = 2n- 7 and degH Un-1 + degH Un = 1. 

Then { dego Vn-1, dega vn} = {n - 1, n - 6}, { n - 2, n - 5}, or 
{n-3,n-4}. If {dego Vn-1,dego vn} = {n-1,n-6}, then each common 
card of G has an (n-2) -vertex. But no common card of H has an (n-2)-
vertex, giving a contradiction. If {de go Vn-1, dego vn} = { n- 2, n- 5}, 
then G can have at most one isolated vertex and at most five endvertices. 
Since degH Ui 2 for i = 1 to n- 2, it follows that Un-1 is the only 
isolated vertex of H. Consequently, each common card of H and hence 
each common card of G has at least one isolated vertex. This is impossible 
when {deg0 Vn_ 1, dego vn} = {n- 2, n- 5}. The only remaining case that 
{de go Vn-1, de go Vn} = { n - 3, n - 4} is proved to be impossible in Case 
2 of Theorem 6 in [6]. 

Case 7. dego Vn-1 + dego Vn = 2n- 8 and degH Un-1 + degH Un = 0. 

Clearly {dego Vn-1, dego vn} = {n-1, n-7}, {n-2, n-6}, {n-3, n-
5}, or {n-4}. If {dego Vn-1,dego vn} = {n-1,n-7}, then each common 
card of G has an (n-2) -vertex. But no common card of H has an (n-2)-
vertex, contradicting. If {de go Vn-1, de go Vn} = { n - 2, n - 6}, then each 
common card of G has an (n- 3) -vertex. But no common card of H has 
an (n- 3) -vertex, again contradicting. The remaining two cases, namely 
{dego Vn-1,dego Vn} = {n-3,n-5} and {dego Vn-1,dego vn} = {n-4} 
are proved to be impossible in Case 3 of Theorem 6 in [6]. Thus all the 
seven cases lead to a contradiction and complete the proof of Theorem 4 .• 

4 Conclusion 

There are graph pairs G and H on eight vertices with six 
common cards such that le(G) - e(H)I = 1. Rivshin and Radziszowski 
[7] reported that for 9 :::::; n :::::; 11, there exists no pairs of non-isomorphic 
graphs with n - 2 common cards. It appears that similar techniques can 
be used to find the absolute difference between the number of edges in pairs 
of graphs with n - 3 common cards. 

Acknowledgement: We are thankful to an anonymous referee for 
simplification in the proof of Theorem 4. 
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