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Schultz polynomial and modified Schultz
polynomial of a random benzenoid chain
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Abstract

Let G be a graph with a vertex set V(G), da(u,v) and d¢(v)
denote the topological distance between vertices u and v in G and
the degree of the vertex v in G, respectively. The Schultz polyno-

mial of G is defined as H*(G) = Y (be(u) + b (v))xde)
{u,0}CV(G)

and the modified Schultz polynomial of G is defined as H*(G) =
> 8c(u)dc(v)zde ™) In this paper, we obtain explicit an-

{u,v}CV(G)

alytical expressions for expected values of Schultz polynomial and

modified Schultz polynomial of a random benzenoid chain with n

hexagons. Further expected values of some related topological in-

dices are obtained.

Keywords: Schultz polynomial, modified Schultz polynomial, ran-
dom benzenoid chain, expected value, generating function.

1 Introduction

Let G be a graph with a vertex set V(G) and let dg(u,v) denote the topo-
logical distance (or distance for short) between vertices v and v in G, i.e.,
the length of a shortest path connecting v and v in G, ég(u) denote the
degree of vertex u in G, respectively. The subscript is omitted when there
is no risk of confusion.

In 2005, I. Gutman introduced [3] two polynomials in variable z in G,
called the Schultz polynomial H* (G, z) and the modified Schultz polynomial
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Fig. 1: The three types of local arrangements in benzenoid chains B4 1.

H*(G,z), which are analogs for the Hosoya polynomial H(G, ) introduced
by Hosoya [2]. The definitions are as follows:

H*(G,z)= > (da(u)+dg(v))z?e™?),

{u}CV(Q)
H'G,z)= Y  dc(w)dc(v)z®e™,
{uw}CV(Q)
H(G,z) = Z glouv),
{u,}CV(G)

Here, v and v do not necessarily distinct. For some recently results about
this field, we refer the readers to the Refs. [3, 5, 7, 8, 10].

Let B, 11 denote a benzenoid chain with n + 1 hexagons (n > 0). There
are obviously unique benzenoid chains B,+; when n = 0,1. More gen-
erally, a benzenoid chain B, i can be regarded as a benzenoid chain B,
to which a new terminal hexagon with vertices {un, y1, Y2, Y3, y4,Vn} is ad-
joined. However, when n > 2, the terminal hexagon can be attached in
three ways, resulting in the local arrangements B}, B2, |, B3 ,, accord-
ing to the related position of the terminal hexagon shown in Fig. 1.

A random benzenoid chain, R, 1 with n+ 1 hexagons, is a benzenoid
chain obtained by stepwise additions of terminal hexagons. As the initial
steps, Ry = Bi,Rs = Bs, and for each step k£ (2 < k < n) a random
selection is made from one of the three possible constructions:

Br — Bj,, with probability py,

By, — B} +1» With probability ps or

By — B,?;H, with probability ¢ =1 — p; — pa.

We assume the probabilities p; and ps are constants, invariant to the step
parameter k. That is, the process described is a Markov chain of order zero
with a state space consisting of three states.

In the present paper, we calculate the expected value of the Schultz
polynomial and modified Schultz polynomial of a random benzenoid chain
R,, with n hexagons and give explicit analytical expressions by using the
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combinatorial tool: generating function. Further, the expected values of
some related topological indices are obtained.

2 Expected values of Schultz polynomials and
modified Schultz polynomials

Let G be a connected graph with a vertex set V(G). For the simplicity, we
define a notation as follows: for a vertex u € V(QG),

Ho(uiz)= 3 a,
veV(Q)

i.e., the contribution of the vertex u to the Hosoya polynomial H(G,z) of
G. If we consider the effect of degree, we can define the other notation:

H(u;z) = Z §(v)zdwv),
veV(Q)

Hence, alternative formulae of H*(G,z) and H*(G,z) are expressed in
terms of H(u; z) as

HY(Gz)= Y Hiwz)+ > du (1)
uGV(G’) uéV(G)
H*(G,z) = Z §(u)HE (u; ac)+— > P(u (2)
uEV(G’) ueV(G)

2.1 Recursion relations

As described in the previous section, a benzenoid chain B, 1; is obtained by
attaching to a benzenoid chain B,, a terminal hexagon consisting of vertices
Un, Y1, Y2, Y3, Y4, Vn, (see Fig. 1). Now, we will give some basic lemmas:

Lemma 2.1.

Hp, . . (y 1;z) =zHp, (un;z) + 23 + 22+ 241, (3a)

Hp,, (y22) = 2°Hp, (un;2) + 2% + 22+ 1, (3b)

Hp, ., (y3; z) =2?Hp_ (vn;z) + 22 + 22+ 1, (3¢)

Hp,, (ys;z) = zHp, (vp;z) + 23+ 2% + 2 + 1. (3d)

Proof. We only give the proofs of Eqs. (3a) and (3b). From the definition,
Hp, ,(y;z)= >, @ = 3" gl 84224041

wWEV (Bny1) w€eV (By)
Z @) g3 422 o 41 =2Hp (un;z)+2° + 22+ 2 +1;
weV (By)
41
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Hp,, ()= Y. alww)= §° gdenw)2 g2 4 og 4
weV (Bnt1) weV(B,)

=z Z gdun®) L g2 4 92 +1 =22Hp (up;z) +2° + 2z + 1.
weV(B,)

We can prove Egs. (3c) and (3d) in analogous ways. a
Similarly, we have

Lemma 2.2.

Hgnﬂ(yl;x) =rcHgn(un;3:) +22% + 322 + 32 + 2, (4a)

gn+l(y2;x) =$2Hgn(un;z)+z3+3x2+4x+2, . (4b)
Hgn+l(y3;1t) =$2Hgn(vn;z)+:v3+3$2+4x+2, (40)
Hgn+1(y4;x) = :I:Hgn(un;z)+2a:3+3z2 +3z+2, (4d)

Lemma 2.3.

H*(Bny1,7) = HY(Bn, z) + (2 +2°)(Hp, (un; 7) + Hp, (vn; 7))+

(222 + 2z + 1)(Hp, (un; ) + Hp, (vs;2)) + 62° + 1222 4 14z + 18.  (5)

H*(Bpy1,2) = H* (Bp,z) 4+ (222 + 22 + 1)(Hgn(un;x) + HY (vn; 7)) {E
+ 823 + 1622 4 17z + 22. (6)

Proof. From the definition, applying Eqgs. (3) and (4), we have

H¥Bapna)= > (p.u(@) 405, ()™ = 37
{w,z}CV(Bn1) {w,2}CV(Bn)

(6Bn+1 (w) + 6Bn+1 (z))xd(w,z) + Z (6Bn+1 (w)+
{w}CV(Bn+1),{2}S{y1,y2,¥3,y4}
65,1 ()2 = ( > (6m.(w)+6p, ()2
{w:z}gV(Bn)\{“mvn}
+ > (05, (w)+6p, (2)+ 1)z~

{’LU}QV(B“)\{U",‘Un},{z}g{un,vn} {wyz}g{uﬂrvn}

(6, (w) + 65, () + 2?2 + ( > 08,4 (1)
{w}CV(Bnt1),{z}C{y1,y2,y3,94}

242 4 3 220) = (3 (6p,(w)

{w}CV(Bnt1),{z}S{y1,92,y3,y4} {w,2}CV (By,)

42
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+6p, (2))z% ) 4 (Hg, (un;z) + Hp, (vn;z) — 2(z + 1)) + 2(z + 2))
4 4
+ ((ZHgnJrl(yi;x) —2(z® +22% + 32)) + 2(ZHB"+1(ZJ¢;$) — (®

i=1 i=1

4 4
4222 4 3z))) = H*(Bn,x) + Y _Hj , (viz) +2Y_ Hp,,, (vi;2)

i=1 i=1
+ Hp, (un;z) + Hp, (vn;2) — 423 — 822 — 122 + 2
= H*(B,,z) + (z + 22)(H} (un; ) + Hy (vn;2)) + (22% + 22 + 1)
(Hp, (un;x) + Hp, (vn;z)) + 62° + 1222 + 14z + 18.

Similarly, we can prove Eq. (6). O

In fact, the equations discussed above associated with a specific ben-
zenoid chain are valid for a random benzenoid chain, i.e., Eqs. (3)-(6) still
hold when we simultaneously replace B,y for R,+1 and B, for R,.

In what following we consider contributions of u,4+1 and v,4+1 to
H*(Bpy1,z) and H*(Bp41, ) according to the positions of u, 41 and v,41.
There are three cases to consider:

Case 1. B41 — Bi+2- In this case, up4+1 = y1 and vp41 = y2. Conse-
quently, Hp,,, (un+1;2) = HB,,,(y1;7) and Hp, |, (n+1;2) = HB, ., (y2;2),
Hgn+1(un+1;m) = Hgnﬂ(yl;m) and Hf;n+1(vn+1;$) = Hgn“(yg;z) which %
are given by Egs. (3a) and (3b), Egs. (4a) and (4b), respectively.

Case 2. Bpy1 — B,ZH_z. In this case, up+1 = y3 and v+ = y4. Conse-
quently, Hp, , (unt1;2) = Hp, ,, (y3;7) and Hp, ., (vn1;2) = Hp,,, (y4;2),
H%n“(u,ﬂ_l;z) = HJ“.S?"H (y3; ) and Hgn+1(vn+1;x) = Hg"+1(y4; z), which
are given by Egs. (3c) and (3d), Egs. (4c) and (4d), respectively.

Case 3. Bpt1 — Bg+2- In this case, up+1 = y2 and vy = y3. Conse-
quently, HBn.H (un+1 > :L') = HBn-H (y27 17) and HBn+1 (Un+1; CL') = HBn+1 (y3; :E)’
Hf;nH(unH;z) = Hgn“ (y2; z) and Hgn+1(vn+1;x) = HfgnH(yB; x), which
are given by Egs. (3b) and (3c), Eqs. (4b) and (4c), respectively.

For a random benzenoid chain R, y1, H(Rn41,7), H*(Rpt1,T),

Hp,  (unt152), Hr, ) (Vnt1; ), H§n+l(un+1;x) and Hf%n“(vnﬂ;x) are
random variables and we denote their expected values by H,', | (z), Hy; (),
Upt1(2), Vay1(z), U, () and V2, (z), respectively, i.e.,

H\\(z) = E(H* (Rn41,2)), Hp i (2) = E(H (Rpy1, 7)),
Unt1(2) = E(HR, 1, (nt152)), Vot1(2) = E(HR,,, (Vnt1; 7)),
Upi1(2) = E(HR, ,, (un4152)) and V3, (2) = B(HR (V5413 7).

Since the above three cases occur in random benzenoid chains with prob-
abilities p;, po and ¢ = 1 — p; — po, respectively, by the definition of the

43
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expected value we immediately obtain

Un+1(z) = p1HR,, (y1;2) + p2HR, ., (y3;2) + qHR, ., (y2; T), (7a)
Vit1(z) = p1HR,,,(y2; %) + p2HR,,, (va;2) + qHR, , (y3;2),  (7b)
Uns1(z) = p1HR,,, (yi;2) + p2HY |, (y3;7) +qH , (y2;2)  (7c)
Vari(@) = piHg,, (y2;2) + p2HR |, (va;2) + qHp | (ysiz),  (7d)
Substituting the corresponding analogues associated with random benzenoid
chains R, and R, 4; to Egs. (3) and (4) for Eq. (7), we get
Un1(2) = (91 + q2%) Hr, (un ) + p2z*Hr, (v ) + (° — 2)p1 + (& + 1),
Vas1(2) = (P2 + q2°) HR,, (vn; ) + p13° Hr, (un; @) + (2° — 2)p2 + (2 + 1)°,
U 11(z)= (p1z+qz2)Hfgn (un;x) + pgmsz;gn (vn;2)+(1+ pl)z3+3m2+(4 —p1)z+2,
V 1(z)= (p2x+qm2)H15;" (vn;z) + p1x2H}5;n (un;z)+(1 +p2):123+3x2+ (4 — p2)z+2.
By applying the expectation operator to the above equatlons and noting

that E(Un41(2)) = Uns1(2), E(Vag1(2)) = Vaga(z), U4, (2)
= E(H5n+l(un+1, z)) and V% (z) = E(H} . (vnt1;2)). We obtain

wia

Unt1(z) = (P12 + q2°)Un(@) + p22°Va(z) + (2° — 2)p1 + (z + 1)%, (9a)
Vat1(2) = (p2z + ¢2°)Va(2) + p1a’Un(z) + (2 — 2)p2 + (2 + 1)%, (9b)
Upir(z) = (prz + qz*)Un (@) + 2z Vi () + (1 + p1)z° + 32% + (4 — p1)z + 2,
(9¢)
V,f+1(m) = (p2z + qz2)V,f(z) +p1m2U,f(z) +(1 +p2)$3 +32% + (4 —p2)z +2.
(9d)

A recursion relation for the expected value of the Schultz polynomials and
modified Schultz polynomials of a random benzenoid chain can be obtained
from Egs. (5) and (6) by using Ry in place of By (k = n,n + 1) and by
using the expectation operator:

H} i (2) = Hi(z) + (222 + 22 + 1)(U)(2) + Vi (2)) + 8° + 162% + 17z + 22;

H 1 (2) = HY (2) + (z + 2*) (Un(2) + Va (2)) + (227 + 22 + 1)(Un(2)

+ Vi(z)) + 62° + 122% + 14z + 18. (10)

In order to make the calculation more convenient, we assume that the

system of recursion equations (9)-(10) holds for n > 0, and set boundary
conditions as:

Hi (z) =2z +4,H{(z) =z, Up(z) = x + 1,
Vo) =2+ 1,U8(z) =2+ 1,V (z) =z + 1. (11)
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3 Solution for recursion equations

To solve the recursion equations (9)-(10), we use the method of the gener-

ating function [6]. We will use the fact that > t" = (1 —¢)"}, 0 <t <1,
n>0
and define the following generating functions in variable ¢, 0 < ¢t < 1:

Ut) = X Un(a)t™, V(t) = ¥ Va(a)t™, U(t) = X Ul(a)t™, VO(t) =
n>=0 n>0 n20
> Vi@, H(t) = ¥ Hy(@)t" and H*(t) = 3 Hf (o)™,

n>0 n>0 n>0
From Egs. (9)-(11), we get relations of their generating functions as
follows:
3 _ 2
Ut) = tiprz + ge?)U () + paatV (2) + L& x)’;ljtt(z 1 ot (12)
3 _ 2
V(t) = t(pez + qz*)V (t) + p1z*tU(t) + Hz w);laz_-{-tt(z +1) +z+1, (12b)
t((1 e C 2
U¥(t) = e + g (1) + paaev () + LOHRPUZ H 30 L (U -p)r 4 2)
+z41, - (129
t((1 *+3z° + (4—pa)z+2

+z+1, (12d)
HT(t) = tHT (t) + (z + )t(U° () + VP () + (1 + 2z + 22)t[U(t) + V (8)]+
(623 + 1222 + 14z + 18)

T + 2z + 4, (12¢)
3 2
H*(t) = tH"(8) + (1 + 22 + 252U (8) + VO () + L8+ SR L 2)
+ . (12f)

As Egs. (12a) and (12b) form a system of two linear equations of vari-
ables U(t) and V/(t), a straightforward calculation yields:

prz(z + 1)2 (1—pz(z+1) (px?+1)(z+1)

U(t) T@-D-gzt)  (-D(1-=a2) (1-=z)1-1)
- pZ(pl(l— - i;izlxj(:t;r = (1 —lcczt 1 —1zt); (132)
VO = o+ o
R T

45
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As Egs. (12c) and (12d) comprise a system of two linear equations in
two variables U%(t) and V¥(¢t), a straight forward calculation results in

_m (22° +42® +3z+1) (1—p1)22> +2c+1)  2p1z®+ (2p1 + 1)2?

)
v®) G-D-2) | G@-D0=2%) T=2)(1-9D
(1 +2x+2 | p2(p1 — p2)t°(c® +2°)(22° + 20+ 1) (5= — 1=27)
Ti—o0-0 -0 ()
Ve(t) = p2(22°® + 42% + 32+ 1) N (1—p2)(222 +22+1)  2poz® + (2p2 + 1)2?
CENEED) @— 1)1 —2%) D)
(p2+2)z+2  P1(p2 —p1)t(a® +2°)(20° + 20+ 1) (1=tm; — =21)
1-=z)(1-1) (1—1¢)(1—qt) -+ (140)

Substituting Eqs. (13) and (14) for Eq. (12e) and rearranging, we can
once more easily get:
2z + 4 L t(62® + 122% + 14z + 18) N t(1 — ¢)2x(z + 1)%(222 + 2z + 1)
1—¢ a-12 @ -1 =)l —a)
+ 2t(1+ z)(1 + 4z + (5 — @)% + (3 — 2¢)z® + 2(1 — g)z*)) + 22° 4+ 422 + 3z + 1
1-t)2(1-2) (z—1)
2t(l+q) (o1 — )" (e +1)°(42° + 42" +20°) (= — =33) (15)
1—t)(1 —z2t) (1—1t)2(1 - qt) '
Substituting Eqgs. (13) and (14) for Eq. (12f) and rearranging, we can $
easily get:

H*(t) =

H (1) = t(8z> + 1622 + 17z + 22) N t(1 — q)(42® + 12z* + 162° + 1222 + 5z + 1)
- (1—-1t)2 (x—1)(1—t)(1 - xt)
st - q)z® + (12 — 8¢)z* + (20 — 8g)z® + (22 — 4¢)2? + (13 — q)z + 4)
1-t 1-1)2(1-12)
t(1 4 q)(2z2% + 2z + 1)? (p1 —172)2t3(:c2 +- zs)(l + 2z + 2:102)2(&7; — ﬁ{)

T o DI=00-2%) EDEErD

(16)
Applying Newton’s generalized binomial theorem
+00 .
i n+j—1
1—-t)77 = " 17
a-o7=> (") a7

to Eq. (15), and rearranging it, we get

H*(t) = 2z + 4 + 12(2 + 2z + 22 + 2°)t + (44 4 50z + 64z? + 522° + 242*

(1—q)(z+1)%(4z® + 42? + 2z) (2™ — 1)
(z—1)

+oo
+82%)2 + > (2 + 4+ +(1+q)

n=3
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(4z* + 823 + 622 4 2z)(x*" — 1) " (4(1 — ¢)=® + (4 — 8q)x* + (10 — 69)z*)n

(z-1)2(z+ 1) (1-2)
L 26— q)af:rfz H10R po) (e + 1)2(da® + 4ot + 2°) dod(Y
1=0 k=0

Applying Eq. (17) to Eq. (16) and rearranging it, we get

H*(t) = 2+ 12(2 + 2z + 22° + 2®)t + (50 + 57z + 722° + 562> + 24x* + 82°)t*+

+f($ + (1 —q)(42° +12z* +162° + 122% 4+ 5z + 1)(z" — 1)

n=3 ((L' - 1)2

(4(1 — @)z® + (4 — 8q)z* + (12 — 8¢)x® + (21 — 4q)z* + (8 — )z + 26)n
l1—z

+

22 - 2(p2n _ 5 n-3
0 q)(2($ _+12)2(:i)1§ D_ (pr — p2)2(¢® + 2%)(1 + 2z 4 22%)* ; q

—+

n—3-—1

(> (n=l—k=2)(a® —z*))t". (19)

4 Results and Discussion

First, we give two main theorems of this paper. From Eq. (18), we have
the following first main theorem.

Theorem 4.1. Let H;f (z) be the ezpected value of the Schultz polynomial
of a random benzenoid chain with n heragons. Then

Hi (z) = 12(2+ 2z + 22° + 2°); HY (¢) = 44 + 50z + 642> + 522° + 242 + 8¢°;
and when n > 3,
(1 —q)(z + 1)%(42® + 4% 4 2z)(a™ — 1)
(z—1)?
L+ q)(4z* + 8% + 622 + 2x)(2*" — 1)
(z =12z +1)
(4(1 — q)z®° + (4 — 8¢)z* + (10 — 6q)z>® 4 2(8 — q)x% + 6z + 20)n

HY(z)=2c+4+

+ (1 — (E) - (Pl —p2)2
n-—3 n—3—1
(z+1)%(42° + 42 +22°) Y " ¢' (n—1—k—2)(z* —z*). (20)
=0 k=0
47
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When ¢ = 1 (in this case p; = ps = 0), a random benzenoid chain is
definitely a linear benzenoid chain, i.e., a benzenoid chain without no turns.
So from Theorem 4.1 we have

Corollary 4.2. [7, 8, 10] Let G be a benzenoid chain with n hezagons. If
G has no turns, then the Schultz polynomial of G is

2(2 — 5z — 42 — 323 4 22120 4 4g2F2n 4 4o8F2n)

H*(G,z) = (z—1)2
2n(10 — Tz + 42? — 52° — 4a* 4 22°)
(z-1)? '

If p =1 or p, = 1, a random benzenoid chain with n hexagons is
definitely a helicene with n hexagons, then we get

Corollary 4.3. [7, 8, 10] Let G be a helicene with n hexagons. Then the
Schultz polynomial of G is

2(2—5x—62% —8x% —72® 4 22® + 2" (x + 5% 4 112% 4 132* + 82°))

+ —
H™(G,z)= @o1)2
_18(z* +2°)  4a™*® 4 2n(10 — 7z + 52® — 32° — 22" 4 22° — 2% — 27 — 22°)
(z—1)? (z—1)? '

Secondly, from Schultz polynomial, we can easily get Schultz index
W*(G) of a molecular graph G and it was introduced by Dobrynin and
Kochetova [1] and Gutman [4], is equal to the first derivative of the Schultz
polynomial in z = 1:

d
W*(G) = TH*(C,z)

(21)
=1
And Klavzar and Gutman introduced modified Schultz index W*(G)
in literature [9], it is equal to the first derivative of the modified Schultz
polynomial in z = 1:
d

W*(G) = ~— H*(G, z)

i (22)

r=1

By Eqgs. (20) and (21), we get its Schultz index,
Corollary 4.4. Let W,} the expected value of the Schultz index of a random
benzenoid chain with n hexagons. Then

20g(n® —3n%+2n)  20(p1 — po)?

W =24 18n + 68n% 4 20n3 + 3 3

n—3

> k(k+1)(k+2)g .

k=0
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94n+6), which is also the Schultz index of the linear benzenoid chains (i.e.,

linear polyacences); if p; = 1 or p2 = 1, hence ¢ = 0, it is a helicene, whose
Schultz index is %(40n® + 324n% — 166n + 126).
From Eq. (19), we have the following second main theorem.

If ¢ = 1, we can get the upper bound on W, ie., 1(80n3 + 144n% +

Theorem 4.5. Let H} the expected value of the modified Schultz polynomial
of a random benzenoid chain with n hexagons. Then

Hi (x) = 12(2 4 2z + 22% + 2%); H (2) = 50 + 57z + 722° + 562° + 242* + 82°;
and when n > 3,

1— 5 1 4 1 3 2 n_ 1
H@) =2+ (1 —q)(4z® +122* + (fix 1—);23: + 5z +1)(x )

. (4(1 — q)z° + (4 — 8g)z* + (12 — 8¢)z® + (21 — 4q)z? + (8 — q¢)z + 26)n
-z

(1+q)(22% + 2z + 1)%(z?" - 1)

* @—12@+1)

— (p1 — p2)%(z? + 2°)(1 + 2z + 22%)?

n

!
q Z (n—1—k—2)(z* —z*). (23) -

3 n—-3—
k=

o~
I
=]

0

When ¢ = 1 (in this case py = py = 0), a random benzenoid chain is
definitely a linear benzenoid chain, i.e., a benzenoid chain without no turns.
So from Theorem 4.5 we have

Corollary 4.6. [7, 8, 10] Let G be a benzenoid chain with n hexagons. If
G has no turns, then modified Schultz polynomial of G is

2n(2 + 6z + 922 + 62° + 2z1)

H*(G,z) =z + n(22 + 17z + 1622 + 82°) —

2(1 + 2z + 22%)2(2?" - 1)
(z—-1)2(1+x)

If p =1 or p = 1, a random benzenoid chain with n hexagons is
definitely a helicene with n hexagons, then we get

Corollary 4.7. [7, 8, 10] Let G be a helicene with n hezagons. Then the
modified Schultz polynomial of G is
. z"(4x6+16x5+28m4+28z3+17z2+6x+1)+4x8—12z6—20z5—233:4
H*(G,z)=
(z-1)2
_ 212° +192° 4+ T2+ 2+n(42° + 42" +42° — 42° 4 52" 4+ 82° — 132% + 182 — 26)
(z-1)? '

By Eqgs. (22) and (23), we get its modified Schultz index,
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Corollary 4.8. Let Wi the expected value of the modified Schultz indez of
a random benzenoid chain with n heragons. Then
25q(n® — 3n® + 2n)  25(p1 — p2)°

3 3

W2 =1+ 12n + 70n® + 25n° +

n—3

> k(k+1)(k+2)g" " 2
k=0
If ¢ = 1, we can get the upper bound 1(100n® + 135n2 + 86n + 3) on
W, which is also the modified Schultz index of the linear benzenoid chain;
if py = 1 or pp = 1, hence ¢ = 0, it is a helicene, we can get its modified
Schultz index: §(50n® + 360n> — 239n + 153).
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